20 research outputs found

    Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides

    Full text link
    Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transition metal dichalcogenide (TMDC) heterostructures can be designed and built by assembling individual single-layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such hetero-bilayers. Here, we investigate artificial semiconductor heterostructures built from single layer WSe2 and MoS2 building blocks. We observe a large Stokes-like shift of ~100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment with spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. The coupling at the hetero-interface can be readily tuned by inserting hexagonal BN (h-BN) dielectric layers into the vdW gap. The generic nature of this interlayer coupling consequently provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers.Comment: http://www.pnas.org/content/early/2014/04/10/1405435111.abstrac

    The relation between endothelial dependent flow mediated dilation of the brachial artery and coronary collateral development – a cross sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelial dysfunction is thought to be a potential mechanism for the decreased presence of coronary collaterals. The aim of the study was to investigate the association between systemic endothelial function and the extent of coronary collaterals.</p> <p>Methods</p> <p>We investigated the association between endothelial function assessed via flow mediated dilation (FMD) of the brachial artery following reactive hyperemia and the extent of coronary collaterals graded from 0 to 3 according to Rentrop classification in a cohort of 171 consecutive patients who had high grade coronary stenosis or occlusion on their angiograms.</p> <p>Results</p> <p>Mean age was 61 years and 75% were males. Of the 171 patients 88 (51%) had well developed collaterals (grades of 2 or 3) whereas 83 (49%) had impaired collateral development (grades of 0 or 1). Patients with poor collaterals were significantly more likely to have diabetes (<it>p </it>= 0.001), but less likely to have used statins (<it>p </it>= 0.083). FMD measurements were not significantly different among good and poor collateral groups (11.5 ± 5.6 vs. 10.4 ± 6.2% respectively, <it>p </it>= 0.214). Nitroglycerin mediated dilation was also similar (13.4 ± 5.9 vs. 12.8 ± 6.5%, <it>p </it>= 0.521).</p> <p>Conclusion</p> <p>No significant association was found between the extent of angiographically visible coronary collaterals and systemic endothelial function assessed by FMD of the brachial artery.</p
    corecore