83 research outputs found

    The calcar screw in angular stable plate fixation of proximal humeral fractures - a case study

    Full text link
    Background: With new minimally-invasive approaches for angular stable plate fixation of proximal humeral fractures, the need for the placement of oblique inferomedial screws ('calcar screw') has increasingly been discussed. The purpose of this study was to investigate the influence of calcar screws on secondary loss of reduction and on the occurrence of complications. Methods: Patients with a proximal humeral fracture who underwent angular stable plate fixation between 01/2007 and 07/2009 were included. On AP views of the shoulder, the difference in height between humeral head and the proximal end of the plate were determined postoperatively and at follow-up. Additionally, the occurrence of complications was documented. Patients with calcar screws were assigned to group C+, patients without to group C-. Results: Follow-up was possible in 60 patients (C+ 6.7 ± 5.6 M/C- 5.0 ± 2.8 M). Humeral head necrosis occurred in 6 (C+, 15.4%) and 3 (C-, 14.3%) cases. Cut-out of the proximal screws was observed in 3 (C+, 7.7%) and 1 (C-, 4.8%) cases. In each group, 1 patient showed delayed union. Implant failure or lesions of the axillary nerve were not observed. In 44 patients, true AP and Neer views were available to measure the head-plate distance. There was a significant loss of reduction in group C- (2.56 ± 2.65 mm) compared to C+ (0.77 ± 1.44 mm; p = 0.01). Conclusions: The placement of calcar screws in the angular stable plate fixation of proximal humeral fractures is associated with less secondary loss of reduction by providing inferomedial support. An increased risk for complications could not be shown

    Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results

    Get PDF
    INTRODUCTION: Second-generation autologous chondrocyte implantation with scaffolds stabilizing the grafts is a clinically effective procedure for cartilage repair. In this ongoing prospective observational case report study, we evaluated the effectiveness of BioSeed-C, a cell-based cartilage graft based on autologous chondrocytes embedded in fibrin and a stable resorbable polymer scaffold, for the treatment of clinical symptomatic focal degenerative defects of the knee. METHODS: Clinical outcome after 4-year clinical follow-up was assessed in 19 patients with preoperatively radiologically confirmed osteoarthritis and a Kellgren-Lawrence score of 2 or more. Clinical scoring was performed before implantation of the graft and 6, 12, and 48 months after implantation using the Lysholm score, the Knee injury and Osteoarthritis Outcome Score (KOOS), the International Knee Documentation Committee (IKDC) score, and the International Cartilage Repair Society (ICRS) score. Cartilage regeneration and articular resurfacing were assessed by magnetic resonance imaging (MRI) 4 years after implantation of the autologous cartilage graft. RESULTS: Significant improvement (P < 0.05) of the Lysholm and ICRS scores was observed as early as 6 months after implantation of BioSeed-C and remained stable during follow-up. The IKDC score showed significant improvement compared with the preoperative situation at 12 and 48 months (P < 0.05). The KOOS showed significant improvement in the subclasses pain, activities of daily living, and knee-related quality of life 6 months as well as 1 and 4 years after implantation of BioSeed-C in osteoarthritic defects (P < 0.05). MRI analysis showed moderate to complete defect filling with a normal to incidentally hyperintense signal in 16 out of 19 patients treated with BioSeed-C. Two patients without improvement in the clinical and MRI scores received a total knee endoprosthesis after 4 years. CONCLUSIONS: The results show that the good clinical outcome achieved 1 year after implantation of BioSeed-C remains stable over the course of a period of 4 years and suggest that implanting BioSeed-C is a promising treatment option for the repair of focal degenerative defects of the knee

    Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results

    Get PDF
    Autologous chondrocyte implantation (ACI) is an effective clinical procedure for the regeneration of articular cartilage defects. BioSeed®-C is a second-generation ACI tissue engineering cartilage graft that is based on autologous chondrocytes embedded in a three-dimensional bioresorbable two-component gel-polymer scaffold. In the present prospective study, we evaluated the short-term to mid-term efficacy of BioSeed-C for the arthrotomic and arthroscopic treatment of posttraumatic and degenerative cartilage defects in a group of patients suffering from chronic posttraumatic and/or degenerative cartilage lesions of the knee. Clinical outcome was assessed in 40 patients with a 2-year clinical follow-up before implantation and at 3, 6, 12, and 24 months after implantation by using the modified Cincinnati Knee Rating System, the Lysholm score, the Knee injury and Osteoarthritis Outcome Score, and the current health assessment form (SF-36) of the International Knee Documentation Committee, as well as histological analysis of second-look biopsies. Significant improvement (p < 0.05) in the evaluated scores was observed at 1 and/or 2 years after implantation of BioSeed-C, and histological staining of the biopsies showed good integration of the graft and formation of a cartilaginous repair tissue. The Knee injury and Osteoarthritis Outcome Score showed significant improvement in the subclasses pain, other symptoms, and knee-related quality of life 2 years after implantation of BioSeed-C in focal osteoarthritic defects. The results suggest that implanting BioSeed-C is an effective treatment option for the regeneration of posttraumatic and/or osteoarthritic defects of the knee

    Autologous chondrocyte implantation versus ACI using 3D-bioresorbable graft for the treatment of large full-thickness cartilage lesions of the knee

    Full text link
    BACKGROUND: In autologous chondrocyte implantation (ACI), the periosteum patch which is sutured over the cartilage defect has been identified as a major source of complications such as periosteal hypertrophy. In the present retrospective study, we compared midterm results of first-generation ACI with a periosteal patch to second generation ACI using a biodegradable collagen fleece (BioSeed-C) in 82 patients suffering from chronic posttraumatic and degenerative cartilage lesions of the knee. METHODS: Clinical outcome was assessed in 42 patients of group 1 and in 40 patients of group 2 before implantation of the autologous chondrocytes and at a minimum follow-up of 2 years using the ICRS score, the modified Cincinnati score and the Lysholm score. RESULTS: Although patients treated with BioSeed-C had more previous surgical procedures on their respective knees, highly significant improvements (P < 0.001) were assessed in both groups at comparable outcome levels: the ICRS score improved from grade D (poor) preoperatively to grade C (fair); the modified Cincinnati knee score from 3.26 to 6.4 (group 1) and 3.3 and 6.88 (group 2). Lysholm score improved from 33 to 70 points (group 1) and from 47 to 78 points (group 2), respectively. Revision surgery was due to symptomatic periosteal hypertrophy (n = 4), graft failure (n = 3), plica syndrome (n = 2) synovectomy (n = 1) (group 1); and graft failure (n = 2), debridement (n = 1), synovectomy (n = 2) (group 2). CONCLUSION: These results suggest that BioSeed-C is an equally effective treatment option for focal degenerative chondral lesions of the knee in this challenging and complex patient profile

    Prophylaxis of infectious complications with colony-stimulating factors in adult cancer patients undergoing chemotherapy—evidence-based guidelines from the Infectious Diseases Working Party AGIHO of the German Society for Haematology and Medical Oncology (DGHO)

    Get PDF
    We found convincing evidence from numerous randomised controlled trials that G-CSF, biosimilar G-CSF and pegfilgrastim reduce the risk to develop febrile neutropenia and infections. As a rule of thumb, it seems the relative benefit is highest for patients with an intermediate risk of infections. Compared to other guidelines, we rated the evidence for growth factors during AML induction chemotherapy and pegfilgrastim use in haematological malignancies lowe

    Tibial stress fracture after computer-navigated total knee arthroplasty

    Get PDF
    A correct alignment of the tibial and femoral component is one of the most important factors determining favourable long-term results of a total knee arthroplasty (TKA). The accuracy provided by the use of the computer navigation systems has been widely described in the literature so that their use has become increasingly popular in recent years; however, unpredictable complications, such as displaced or stress femoral or tibial fractures, have been reported to occur a few weeks after the operation. We present a case of a stress tibial fracture that occurred after a TKA performed with the use of a computer navigation system. The stress fracture, which eventually healed without further complications, occurred at one of the pinhole sites used for the placement of the tibial trackers

    Clinical application of scaffolds for cartilage tissue engineering

    Get PDF
    The purpose of this paper is to review the basic science and clinical literature on scaffolds clinically available for the treatment of articular cartilage injuries. The use of tissue-engineered grafts based on scaffolds seems to be as effective as conventional ACI clinically. However, there is limited evidence that scaffold techniques result in homogeneous distribution of cells. Similarly, few studies exist on the maintenance of the chondrocyte phenotype in scaffolds. Both of which would be potential advantages over the first generation ACI. The mean clinical score in all of the clinical literature on scaffold techniques significantly improved compared with preoperative values. More than 80% of patients had an excellent or good outcome. None of the short- or mid-term clinical and histological results of these tissue-engineering techniques with scaffolds were reported to be better than conventional ACI. However, some studies suggest that these methods may reduce surgical time, morbidity, and risks of periosteal hypertrophy and post-operative adhesions. Based on the available literature, we were not able to rank the scaffolds available for clinical use. Firm recommendations on which cartilage repair procedure is to be preferred is currently not known on the basis of these studies. Randomized clinical trials and longer follow-up periods are needed for more widespread information regarding the clinical effectiveness of scaffold-based, tissue-engineered cartilage repair
    corecore