585 research outputs found

    Basic Psychological Needs, Suicidal Ideation, and Risk for Suicidal Behavior in Young Adults

    Get PDF
    Associations between the satisfaction of basic psychological needs of autonomy, competence, and relatedness with current suicidal ideation and risk for suicidal behavior were examined. Two logistic regressions were conducted with a cross-sectional database of 440 university students to examine the association of need satisfaction with suicidal ideation and risk for suicidal behavior, while controlling for demographics and depressive symptoms. Suicidal ideation was reported by 15% of participants and 18% were found to be at risk for suicidal behavior. A one standard deviation increase in need satisfaction reduced the odds of suicidal ideation by 53%, OR (95% CI) = 0.47 (0.33–0.67), and the odds of being at risk for suicidal behavior by 50%, OR (95% CI) = 0.50 (0.37–0.69). Young adults whose basic psychological needs are met may be less likely to consider suicide and engage in suicidal behavior. Prospective research is needed to confirm these associations

    Complex band structure and plasmon lattice Green's function of a periodic metal-nanoparticle chain

    Full text link
    When the surface plasmon resonance in a metal-nanoparticle chain is excited at one point, the response signal will generally decay down the chain due to absorption and radiation losses. The decay length is a key parameter in such plasmonic systems. By studying the plasmon lattice Green's function, we found that the decay length is generally governed by two exponential decay constants with phase factors corresponding to guided Bloch modes and one power-law decay with a phase factor corresponding to that of free space photons. The results show a high level of similarity between the absorptive and radiative decay channels. By analyzing the poles (and the corresponding residues) of the Green's function in a transformed complex reciprocal space, the dominant decay channel of the real-space Green's function is understood.Comment: 19 pages, 3 figure

    Origins of order in cognitive activity

    Get PDF
    Most cognitive scientists have run across The War of the Ghosts, a Native American story used by The origin of order in cognition is the topic of this chapter. We begin with a discussion of how order is explained within a traditional approach of information processing. Taking the shortcomings of this account seriously, we then turn to other disciplines -those that have framed the question of order more successfully. The answers have relied on the concept of self-organization, the idea that order can emerge spontaneously from the nonlinear interaction of a system's components. In the remainder of the chapter, we discuss empirical evidence for self-organization in cognition. The accumulated evidence in reasoning, speaking, listening, reading, and remembering motivates a complex system approach to cognition. 20

    Gauging the three-nucleon spectator equation

    Get PDF
    We derive relativistic three-dimensional integral equations describing the interaction of the three-nucleon system with an external electromagnetic field. Our equations are unitary, gauge invariant, and they conserve charge. This has been achieved by applying the recently introduced gauging of equations method to the three-nucleon spectator equations where spectator nucleons are always on mass shell. As a result, the external photon is attached to all possible places in the strong interaction model, so that current and charge conservation are implemented in the theoretically correct fashion. Explicit expressions are given for the three-nucleon bound state electromagnetic current, as well as the transition currents for the scattering processes \gamma He3 -> NNN, Nd -> \gamma Nd, and \gamma He3 -> Nd. As a result, a unified covariant three-dimensional description of the NNN-\gamma NNN system is achieved.Comment: 23 pages, REVTeX, epsf, 4 Postscript figure

    Dispersion of response times reveals cognitive dynamics.

    Full text link

    The Single-Particle Spectral Function of 16O^{16}{\rm O}

    Full text link
    The influence of short-range correlations on the pp-wave single-particle spectral function in 16O^{16}{\rm O} is studied as a function of energy. This influence, which is represented by the admixture of high-momentum components, is found to be small in the pp-shell quasihole wave functions. It is therefore unlikely that studies of quasihole momentum distributions using the (e,ep)(e,e'p) reaction will reveal a significant contribution of high momentum components. Instead, high-momentum components become increasingly more dominant at higher excitation energy. The above observations are consistent with the energy distribution of high-momentum components in nuclear matter.Comment: 5 pages, RevTeX, 3 figure

    Theoretical study of the stable states of small carbon clusters Cn (n = 2-10)

    Full text link
    Both even- and odd-numbered neutral carbon clusters Cn (n = 2-10) are systematically studied using the energy minimization method and the modified Brenner potential for the carbon-carbon interactions. Many stable configurations were found and several new isomers are predicted. For the lowest energy stable configurations we obtained their binding energies and bond lengths. We found that for n < 6 the linear isomer is the most stable one while for n > 5 the monocyclic isomer becomes the most stable. The latter was found to be regular for all studied clusters. The dependence of the binding energy for linear and cyclic clusters versus the cluster size n (n = 2-10) is found to be in good agreement with several previous calculations, in particular with ab initio calculations as well as with experimental data for n = 2-5.Comment: Submitted to Phys. Rev.

    Quark-Antiquark Bound States in the Relativistic Spectator Formalism

    Get PDF
    The quark-antiquark bound states are discussed using the relativistic spectator (Gross) equations. A relativistic covariant framework for analyzing confined bound states is developed. The relativistic linear potential developed in an earlier work is proven to give vanishing meson\to q+qˉq+\bar{q} decay amplitudes, as required by confinement. The regularization of the singularities in the linear potential that are associated with nonzero energy transfers (i.e. q2=0,qμ0q^2=0,q^{\mu}\neq0) is improved. Quark mass functions that build chiral symmetry into the theory and explain the connection between the current quark and constituent quark masses are introduced. The formalism is applied to the description of pions and kaons with reasonable results.Comment: 31 pages, 16 figure

    Herding model and 1/f noise

    Full text link
    We provide evidence that for some values of the parameters a simple agent based model, describing herding behavior, yields signals with 1/f power spectral density. We derive a non-linear stochastic differential equation for the ratio of number of agents and show, that it has the form proposed earlier for modeling of 1/f^beta noise with different exponents beta. The non-linear terms in the transition probabilities, quantifying the herding behavior, are crucial to the appearance of 1/f noise. Thus, the herding dynamics can be seen as a microscopic explanation of the proposed non-linear stochastic differential equations generating signals with 1/f^beta spectrum. We also consider the possible feedback of macroscopic state on microscopic transition probabilities strengthening the non-linearity of equations and providing more opportunities in the modeling of processes exhibiting power-law statistics

    Glauber theory of initial- and final-state interactions in (p,2p) scattering

    Get PDF
    We develop the Glauber theory description of initial- and final-state interactions (IFSI) in quasielastic A(p,2p) scattering. We study the IFSI-distortion effects both for the inclusive and exclusive conditions. In inclusive reaction the important new effect is an interaction between the two sets of the trajectories which enter the calculation of IFSI-distorted one-body density matrix for inclusive (p,2p) scattering and are connected with incoherent elastic rescatterings of the initial and final protons on spectator nucleons. We demonstrate that IFSI-distortions of the missing momentum distribution are large over the whole range of missing momentum both for inclusive and exclusive reactions and affect in a crucial way the interpretation of the BNL data on (p,2p) scattering. Our numerical results show that in the region of missing momentum p_{m}\lsim 100-150 MeV/c the incoherent IFSI increase nuclear transparency by 5-10\%. The incoherent IFSI become dominant at p_{m}\gsim 200 MeV/c.Comment: Accepted in Z. Phys.A, Latex, 26 pages, uuencoded 9 figure
    corecore