7,351 research outputs found

    BRST invariant formulation of spontaneously broken gauge theory in generalized differential geometry

    Get PDF
    Noncommutative geometry(NCG) on the discrete space successfully reproduces the Higgs mechanism of the spontaneously broken gauge theory, in which the Higgs boson field is regarded as a kind of gauge field on the discrete space. We could construct the generalized differential geometry(GDG) on the discrete space M4×ZNM_4\times Z_N which is very close to NCG in case of M4×Z2M_4\times Z_2. GDG is a direct generalization of the differential geometry on the ordinary manifold into the discrete one. In this paper, we attempt to construct the BRST invariant formulation of spontaneously broken gauge theory based on GDG and obtain the BRST invariant Lagrangian with the t'Hooft-Feynman gauge fixing term.Comment: 15 page

    B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells.

    Get PDF
    Dendritic cells comprise a system of highly efficient antigen-presenting cells involved in the initiation of T cell responses. Herein, we investigated the role of the CD28 pathway during alloreactive T cell proliferation induced by dendritic-Langerhans cells (D-Lc) generated by culturing human cord blood CD34+ progenitor cells with granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. In addition to expressing CD80 (B7/BB1), a subset of D-Lc expressed B70/B7-2. Binding of the CTLA4-Ig fusion protein was completely inhibited by a combination of monoclonal antibodies (mAbs) against CD80 and B70/B7-2, indicating the absence of expression of a third ligand for CD28/CTLA-4. It is interesting to note that mAbs against CD86 completely prevented the binding of CTLA4-Ig in the presence of mAbs against CD80 and bound to a B70/B7-2-transfected fibroblast cell line, demonstrating that the B70/B7-2 antigen is identical to CD86. CD28 triggering was essential during D-Lc-induced alloreaction as it was inhibited by mAbs against CD28 (9 out of 11 tested). However, none of six anti-CD80 mAbs demonstrated any activity on the D-Lc-induced alloreaction, though some were previously described as inhibitory in assays using CD80-transfected cell lines. In contrast, a mAb against CD86 (IT-2) was found to suppress the D-Lc-dependent alloreaction by 70%. This inhibitory effect was enhanced to > or = 90% when a combination of anti-CD80 and anti-CD86 mAbs was used. The present results demonstrate that D-Lc express, in addition to CD80, the other ligand for CTLA-4, CD86 (B70/B7-2), which plays a primordial role during D-Lc-induced alloreaction

    Near-Infrared Kinetic Spectroscopy of the HO_2 and C_2H_5O_2 Self-Reactions and Cross Reactions

    Get PDF
    The self-reactions and cross reactions of the peroxy radicals HO_2 and C_2H_5O_2 and HO_2 were monitored using simultaneous independent spectroscopic probes to observe each radical species. Wavelength modulation (WM) near-infrared (NIR) spectroscopy was used to detect HO_2, and UV absorption monitored HO_2 and C_2H_5O_2. The temperature dependences of these reactions were investigated over a range of interest to tropospheric chemistry, 221−296 K. The Arrhenius expression determined for the cross reaction, k_2(T) = (6.01^(+1.95)_(−1.47)) × 10^(−13) exp((638 ± 73)/T) cm^3 molecules^(−1) s^(−1) is in agreement with other work from the literature. The measurements of the HO_2 self-reaction agreed with previous work from this lab and were not further refined.(1) The C_2H_5O_2 self-reaction is complicated by secondary production of HO_2. This experiment performed the first direct measurement of the self-reaction rate constant, as well as the branching fraction to the radical channel, in part by measurement of the secondary HO_2. The Arrhenius expression for the self-reaction rate constant is k_3(T) = (1.29^(+0.34)_(−0.27)) × 10^(−13)exp((−23 ± 61)/T) cm^3 molecules^(−1) s^(−1), and the branching fraction value is α = 0.28 ± 0.06, independent of temperature. These values are in disagreement with previous measurements based on end product studies of the branching fraction. The results suggest that better characterization of the products from RO_2 self-reactions are required

    Determination of Equilibrium Constants for the Reaction between Acetone and HO_2 Using Infrared Kinetic Spectroscopy

    Get PDF
    The reaction between the hydroperoxy radical, HO_2, and acetone may play an important role in acetone removal and the budget of HO_x radicals in the upper troposphere. We measured the equilibrium constants of this reaction over the temperature range of 215–272 K at an overall pressure of 100 Torr using a flow tube apparatus and laser flash photolysis to produce HO_2. The HO_2 concentration was monitored as a function of time by near-IR diode laser wavelength modulation spectroscopy. The resulting [HO_2] decay curves in the presence of acetone are characterized by an immediate decrease in initial [HO_2] followed by subsequent decay. These curves are interpreted as a rapid (<100 μs) equilibrium reaction between acetone and the HO_2 radical that occurs on time scales faster than the time resolution of the apparatus, followed by subsequent reactions. This separation of time scales between the initial equilibrium and ensuing reactions enabled the determination of the equilibrium constant with values ranging from 4.0 × 10^(–16) to 7.7 × 10^(–1)8 cm^3 molecule^(–1) for T = 215–272 K. Thermodynamic parameters for the reaction determined from a second-law fit of our van’t Hoff plot were Δ_(r)H°_(245) = −35.4 ± 2.0 kJ mol^(–1) and Δ_(r)S°_(245) = −88.2 ± 8.5 J mol^(–1) K^(–1). Recent ab initio calculations predict that the reaction proceeds through a prereactive hydrogen-bonded molecular complex (HO_2–acetone) with subsequent isomerization to a hydroxy–peroxy radical, 2-hydroxyisopropylperoxy (2-HIPP). The calculations differ greatly in the energetics of the complex and the peroxy radical, as well as the transition state for isomerization, leading to significant differences in their predictions of the extent of this reaction at tropospheric temperatures. The current results are consistent with equilibrium formation of the hydrogen-bonded molecular complex on a short time scale (100 μs). Formation of the hydrogen-bonded complex will have a negligible impact on the atmosphere. However, the complex could subsequently isomerize to form the 2-HIPP radical on longer time scales. Further experimental studies are needed to assess the ultimate impact of the reaction of HO_2 and acetone on the atmosphere

    High Angular Resolution, Sensitive CS J=2-1 and J=3-2 Imaging of the Protostar L1551 NE: Evidence for Outflow-Triggered Star Formation ?

    Full text link
    High angular resolution and sensitive aperture synthesis observations of CS (J=21J=2-1) and CS (J=32J=3-2) emissions toward L1551 NE, the second brightest protostar in the Taurus Molecular Cloud, made with the Nobeyama Millimeter Array are presented. L1551 NE is categorized as a class 0 object deeply embedded in the red-shifted outflow lobe of L1551 IRS 5. Previous studies of the L1551 NE region in CS emission revealed the presence of shell-like components open toward L1551 IRS 5, which seem to trace low-velocity shocks in the swept-up shell driven by the outflow from L1551 IRS 5. In this study, significant CS emission around L1551 NE was detected at the eastern tip of the swept-up shell from VlsrV_{\rm{lsr}} = 5.3 km s1^{-1} to 10.1 km s1^{-1}, and the total mass of the dense gas is estimated to be 0.18 ±\pm 0.02 MM_\odot. Additionally, the following new structures were successfully revealed: a compact disklike component with a size of \approx 1000 AU just at L1551 NE, an arc-shaped structure around L1551 NE, open toward L1551 NE, with a size of 5000\sim 5000 AU, i.e., a bow shock, and a distinct velocity gradient of the dense gas, i.e., deceleration along the outflow axis of L1551 IRS 5. These features suggest that the CS emission traces the post-shocked region where the dense gas associated with L1551 NE and the swept-up shell of the outflow from L1551 IRS 5 interact. Since the age of L1551 NE is comparable to the timescale of the interaction, it is plausible that the formation of L1551 NE was induced by the outflow impact. The compact structure of L1551 NE with a tiny envelope was also revealed, suggesting that the outer envelope of L1551 NE has been blown off by the outflow from L1551 IRS 5.Comment: 29 pages, 12 figures, Accepted for Publication in the Astrophysical Journa

    Laboratory measurements and theoretical calculations of O_2 A band electric quadrupole transitions

    Get PDF
    Frequency-stabilized cavity ring-down spectroscopy was utilized to measure electric quadrupole transitions within the ^(16)O_2 A band, b^1Σ^+_g ← X^3Σ^-_g(0,0). We report quantitative measurements (relative uncertainties in intensity measurements from 4.4% to 11%) of nine ultraweak transitions in the ^NO, ^PO, ^RS, and ^TS branches with line intensities ranging from 3×10^(−30) to 2×10^(−29) cm molec.^(−1). A thorough discussion of relevant noise sources and uncertainties in this experiment and other cw-cavity ring-down spectrometers is given. For short-term averaging (t<100 s), we estimate a noise-equivalent absorption of 2.5×10^(−10) cm^(−1) Hz^(−1/2). The detection limit was reduced further by co-adding up to 100 spectra to yield a minimum detectable absorption coefficient equal to 1.8×10^(−11) cm^(−1), corresponding to a line intensity of ~2.5×10^(−31) cm molec.^(−1). We discuss calculations of electric quadrupole line positions based on a simultaneous fit of the ground and upper electronic state energies which have uncertainties <3 MHz, and we present calculations of electric quadrupole matrix elements and line intensities. The electric quadrupole line intensity calculations and measurements agreed on average to 5%, which is comparable to our average experimental uncertainty. The calculated electric quadrupole band intensity was 1.8(1)×10^(−27) cm molec.−1 which is equal to only ~8×10^(−6) of the magnetic dipole band intensity

    ROBAST: Development of a Non-Sequential Ray-Tracing Simulation Library and its Applications in the Cherenkov Telescope Array

    Get PDF
    We have developed a non-sequential ray-tracing simulation library, ROot-BAsed Simulator for ray Tracing (ROBAST), which is aimed for wide use in optical simulations of cosmic-ray (CR) and gamma-ray telescopes. The library is written in C++ and fully utilizes the geometry library of the ROOT analysis framework. Despite the importance of optics simulations in CR experiments, no open-source software for ray-tracing simulations that can be widely used existed. To reduce the unnecessary effort demanded when different research groups develop multiple ray-tracing simulators, we have successfully used ROBAST for many years to perform optics simulations for the Cherenkov Telescope Array (CTA). Among the proposed telescope designs for CTA, ROBAST is currently being used for three telescopes: a Schwarzschild--Couder telescope, one of the Schwarzschild--Couder small-sized telescopes, and a large-sized telescope (LST). ROBAST is also used for the simulations and the development of hexagonal light concentrators that has been proposed for the LST focal plane. By fully utilizing the ROOT geometry library with additional ROBAST classes, building complex optics geometries that are typically used in CR experiments and ground-based gamma-ray telescopes is possible. We introduce ROBAST and show several successful applications for CTA

    Distribution function approach to redshift space distortions. Part IV: perturbation theory applied to dark matter

    Full text link
    We develop a perturbative approach to redshift space distortions (RSD) using the phase space distribution function approach and apply it to the dark matter redshift space power spectrum and its moments. RSD can be written as a sum over density weighted velocity moments correlators, with the lowest order being density, momentum density and stress energy density. We use standard and extended perturbation theory (PT) to determine their auto and cross correlators, comparing them to N-body simulations. We show which of the terms can be modeled well with the standard PT and which need additional terms that include higher order corrections which cannot be modeled in PT. Most of these additional terms are related to the small scale velocity dispersion effects, the so called finger of god (FoG) effects, which affect some, but not all, of the terms in this expansion, and which can be approximately modeled using a simple physically motivated ansatz such as the halo model. We point out that there are several velocity dispersions that enter into the detailed RSD analysis with very different amplitudes, which can be approximately predicted by the halo model. In contrast to previous models our approach systematically includes all of the terms at a given order in PT and provides a physical interpretation for the small scale dispersion values. We investigate RSD power spectrum as a function of \mu, the cosine of the angle between the Fourier mode and line of sight, focusing on the lowest order powers of \mu and multipole moments which dominate the observable RSD power spectrum. Overall we find considerable success in modeling many, but not all, of the terms in this expansion.Comment: 37 pages, 13 figures, published in JCA

    Phase transitions of nematic rubbers

    Full text link
    Single crystal nematic elastomers undergo a transition from a strongly ordered phase N to an "isotropic" phase I. We show that: (a) samples produced under tension by the Finkelmann procedure are intrinsically anisotropic and should show a small (temperature dependent) birefringence in the high temperature I phase. (b) for the I->Ntransition via cooling there is a spinodal limit but for the N->I transition via heating there is no soft mode at the standard spinodal temperature. (c) the N->I transition is reminiscent of a martensitic transformation: nucleation of the I phase should occur in the form of platelets, making a well defined angle with the director.Comment: 7 pages, 3 figures (To appear in Europhys. Lett.
    corecore