5,664 research outputs found

    Experimental demonstration of four-party quantum secret sharing

    Get PDF
    Secret sharing is a multiparty cryptographic task in which some secret information is splitted into several pieces which are distributed among the participants such that only an authorized set of participants can reconstruct the original secret. Similar to quantum key distribution, in quantum secret sharing, the secrecy of the shared information relies not on computational assumptions, but on laws of quantum physics. Here, we present an experimental demonstration of four-party quantum secret sharing via the resource of four-photon entanglement

    Spin-Gap Phase in the One-Dimensional t-J-J' Model

    Full text link
    The spin-gap phase of the one-dimensional t-J-J' model is studied by the level-crossing of the singlet and the triplet excitation spectra. The phase boundary obtained between the Tomonaga-Luttinger and the spin-gap phases is remarkably consistent with the analytical results at the J,J0J,J'\to 0 and the low-density limits discussed by Ogata et al. The spin-gap phase has a single domain in the phase diagram even if the spin gap opens at half-filling. The phase boundary coincides with the Kρ=1K_{\rho}=1 line where the Tomonaga-Luttinger liquid behaves as free electrons, in the low-density region. The relation between our method and the solution of the two-electron problem is also discussed.Comment: 4 pages(JPSJ.sty), 5 figures(EPS), to appear in J. Phys. Soc. Jpn. 67, No.3 (1998

    Dissociation of Relativistic Projectiles with the Continuum-Discretized Coupled-Channels Method

    Full text link
    Relativistic effects in the breakup of weakly-bound nuclei at intermediate energies are studied by means of the continuum-discretized coupled-channels method with eikonal approximation. Nuclear coupling potentials with Lorentz contraction are newly included and those effects on breakup cross sections are investigated. We show that relativistic corrections lead to larger breakup cross sections. Coupled-channel effects on the breakup cross sections are also discussed.Comment: 9 pages, 7 figures, to be published in Prog. Theo. Phy

    Recent developments in the eikonal description of the breakup of exotic nuclei

    Full text link
    The study of exotic nuclear structures, such as halo nuclei, is usually performed through nuclear reactions. An accurate reaction model coupled to a realistic description of the projectile is needed to correctly interpret experimental data. In this contribution, we briefly summarise the assumptions made within the modelling of reactions involving halo nuclei. We describe briefly the Continuum-Discretised Coupled Channel method (CDCC) and the Dynamical Eikonal Approximation (DEA) in particular and present a comparison between them for the breakup of 15C on Pb at 68AMeV. We show the problem faced by the models based on the eikonal approximation at low energy and detail a correction that enables their extension down to lower beam energies. A new reaction observable is also presented. It consists of the ratio between angular distributions for two different processes, such as elastic scattering and breakup. This ratio is completely independent of the reaction mechanism and hence is more sensitive to the projectile structure than usual reaction observables, which makes it a very powerful tool to study exotic structures far from stability.Comment: Contribution to the proceedings of the XXI International School on Nuclear Physics and Applications & the International Symposium on Exotic Nuclei, dedicated to the 60th Anniversary of the JINR (Dubna) (Varna, Bulgaria, 6-12 September 2015), 7 pages, 4 figure

    Variational Study of the Spin-Gap Phase of the One-Dimensional t-J Model

    Full text link
    We propose a correlated spin-singlet-pairs wave function to describe the spin-gap phase of the one-dimensional tJt-J model at low density. Adding a Jastrow factor with a variational parameter, ν\nu, first introduced by Hellberg and Mele, is shown to correctly describe the long-range behavior expected for the Luther-Emery phase. Using the variational Monte Carlo method we establish a relation between ν\nu and the Luttinger exponent KρK_\rho, Kρ=12νK_\rho=\frac{1}{2\nu}.Comment: 4 pages (LaTex), 3 figures attache

    Is there spin-charge separation in the 2D Hubbard and t-J models at low electronic densities?

    Full text link
    The spin and density correlation functions of the two-dimensional Hubbard model at low electronic density are calculated in the ground state by using the power method, and at finite temperatures by using the quantum Monte Carlo technique. Both approaches produce similar results, which are in close agreement with numerical and high temperature expansion results for the two-dimensional tJ{\rm t-J} model. Using perturbative approximations, we show that the examination of the density correlation function alone is not enough to support recent claims in the literature that suggested spin and charge separation in the low electronic density regime of the tJ{\rm t-J} model.Comment: 11 pages, tex, 3 figures upon request, NTHU - preprin

    Luttinger Liquid Instability in the One Dimensional t-J Model

    Full text link
    We study the t-J model in one dimension by numerically projecting the true ground state from a Luttinger liquid trial wave function. We find the model exhibits Luttinger liquid behavior for most of the phase diagram in which interaction strength and density are varied. However at small densities and high interaction strengths a new phase with a gap to spin excitations and enhanced superconducting correlations is found. We show this phase is a Luther-Emery liquid and study its correlation functions.Comment: REVTEX, 11 pages. 4 Figures available on request from [email protected]

    Superconductivity in a Quasi One Dimensional Spin Liquid

    Full text link
    The single rung t-J ladder is analyzed in a mean field theory using Gutzwiller renormalization of the matrix elements to account for strong correlation. The spin liquid (RVB) state at half-filling evolves into a superconducting state upon doping. The order parameter has a modified d-wave character. A lattice of weakly coupled ladders should show a superconducting phase transition.Comment: 9 pages + 4 postscript files appende

    Possibility of f-wave spin-triplet superconductivity in the CoO superconductor: a case study on a 2D triangular lattice in the repulsive Hubbard model

    Full text link
    Stimulated by the recent finding of Na0.35_{0.35}CoO2_2.1.3H2_2O superconductor, we investigate superconducting instabilities on a 2D triangular lattice in the repulsive Hubbard model. Using the third-order perturbation expansion with respect to the on-site repulsion UU, we evaluate the linearized Dyson-Gor'kov equation. We find that an ff-wave spin-triplet pairing is the most stable in a wide range of the next nearest neighbor hopping integral tt' and an electron number density nn. The introduction of tt' is crucial to adjust the van Hove singularities to the neighborhood of the Fermi surface crossing around K point. In this case, the bare spin susceptibility shows the broad peak around Γ\Gamma point. These conditions stabilize the ff-wave pairing. Although the ff-wave pairing is also given by the fluctuation-exchange approximation, the transition temperature is too low to be observed. This is because the depairing effect by the spin fluctuation is over-estimated. Thus, the third-order vertex corrections are important for the spin-triplet superconductivity, like the case in Sr2_2RuO4_4.Comment: 4 pages, 7 figure

    The Phase Diagram of Correlated Electrons in a Lattice of Berry Molecules

    Full text link
    A model for correlated electrons in a lattice with local additional spin--1 degrees of freedom inducing constrained hopping, is studied both in the low density limit and at quarter filling. We show that in both 1D and 2D two particles form a bound state even in presence of a repulsive U<U_c. A picture of a dilute Bose gas, leading to off-diagonal long range order (LRO) in 2D (quasi-LRO in 1D), is supported by quantitative calculations in 1D which allow for a determination of the phase diagram.Comment: 7 pages + 2 ps figures, published versio
    corecore