24 research outputs found

    The AFLOW Fleet for Materials Discovery

    Full text link
    The traditional paradigm for materials discovery has been recently expanded to incorporate substantial data driven research. With the intent to accelerate the development and the deployment of new technologies, the AFLOW Fleet for computational materials design automates high-throughput first principles calculations, and provides tools for data verification and dissemination for a broad community of users. AFLOW incorporates different computational modules to robustly determine thermodynamic stability, electronic band structures, vibrational dispersions, thermo-mechanical properties and more. The AFLOW data repository is publicly accessible online at aflow.org, with more than 1.7 million materials entries and a panoply of queryable computed properties. Tools to programmatically search and process the data, as well as to perform online machine learning predictions, are also available.Comment: 14 pages, 8 figure

    Machine-learned multi-system surrogate models for materials prediction

    Get PDF
    AbstractSurrogate machine-learning models are transforming computational materials science by predicting properties of materials with the accuracy of ab initio methods at a fraction of the computational cost. We demonstrate surrogate models that simultaneously interpolate energies of different materials on a dataset of 10 binary alloys (AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, and NbNi) with 10 different species and all possible fcc, bcc, and hcp structures up to eight atoms in the unit cell, 15,950 structures in total. We find that the deviation of prediction errors when increasing the number of simultaneously modeled alloys is &lt;1 meV/atom. Several state-of-the-art materials representations and learning algorithms were found to qualitatively agree on the prediction errors of formation enthalpy with relative errors of &lt;2.5% for all systems.</jats:p

    Machine-learned multi-system surrogate models for materials prediction

    No full text
    Surrogate machine-learning models are transforming computational materials science by predicting properties of materials with the accuracy of ab initio methods at a fraction of the computational cost. We demonstrate surrogate models that simultaneously interpolate energies of different materials on a dataset of 10 binary alloys (AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, NbNi) with 10 different species and all possible fcc, bcc and hcp structures up to 8 atoms in the unit cell, 15\,950 structures in total. We find that the deviation of prediction errors when increasing the number of simultaneously modeled alloys is less than 1\,meV/atom. Several state-of-the-art materials representations and learning algorithms were found to qualitatively agree on the prediction errors of formation enthalpy with relative errors of <<2.5\% for all systems
    corecore