50 research outputs found

    Copper(II) Complexes with Tetradentate Piperazine-Based Ligands: DNA Cleavage and Cytotoxicity

    Get PDF
    Five-coordinate Cu(II) complexes, [Cu(Ln)X]ClO4/PF6, where Ln = piperazine ligands bearing two pyridyl arms and X = ClO4− for Ln = L1 (1-ClO4), L2 (2-ClO4), L3 (3-ClO4), and L6 (6-ClO4) as well as [Cu(Ln)Cl]PF6 for Ln = L1 (1-Cl), L4 (4-Cl), and L5 (5-Cl) have been synthesized and characterized by spectroscopic techniques. The molecular structures of the last two complexes were determined by X-ray crystallography. In aqueous acetonitrile solutions, molar conductivity measurements and UV-VIS spectrophotometric titrations of the complexes revealed the hydrolysis of the complexes to [Cu(Ln)(H2O)]2+ species. The biological activity of the Cu(II) complexes with respect to DNA cleavage and cytotoxicity was investigated. At micromolar concentration within 2 h and pH 7.4, DNA cleavage rate decreased in the order: 1-Cl ≈ 1-ClO4 > 3-ClO4 ≥ 2-ClO4 with cleavage enhancements of up to 23 million. Complexes 4-Cl, 5-Cl, and 6-ClO4 were inactive. In order to elucidate the cleavage mechanism, the cleavage of bis(4-nitrophenyl)phosphate (BNPP) and reactive oxygen species (ROS) quenching studies were conducted. The mechanistic pathway of DNA cleavage depends on the ligand’s skeleton: while an oxidative pathway was preferable for 1-Cl/1-ClO4, DNA cleavage by 2-ClO4 and 3-ClO4 predominantly proceeds via a hydrolytic mechanism. Complexes 1-ClO4, 3-ClO4, and 5-Cl were found to be cytotoxic against A2780 cells (IC50 30–40 µM). In fibroblasts, the IC50 value was much higher for 3-ClO4 with no toxic effect

    Air–liquid interface cultures enhance the oxygen supply and trigger the structural and functional differentiation of intestinal porcine epithelial cells (IPEC)

    Get PDF
    The specific function of the epithelium as critical barrier between the intestinal lumen and the organism’s internal microenvironment is reflected by permanent maintenance of intercellular junctions and cellular polarity. The intestinal epithelial cells are responsible for absorption of nutritional components, facing mechanical stress and a changing oxygen supplementation via blood stream. Oxygen itself can regulate the barrier and the absorptive function of the epithelium. Therefore, we compared the dish cell culture, the transwell-like membrane culture and the oxygen enriched air–liquid interface (ALI) culture. We demonstrated strong influence of the different culture conditions on morphology and function of intestinal porcine epithelial cell lines in vitro. ALI culture resulted in a significant increase in cell number, epithelial cell layer thickness and expression as well as apical localisation of the microvilli-associated protein villin. Remarkable similarities regarding the morphological parameters were observed between ALI cultures and intestinal epithelial cells in vivo. Furthermore, the functional analysis of protein uptake and degradation by the epithelial cells demonstrated the necessity of sufficient oxygen supply as achieved in ALI cultures. Our study is the first report providing marked evidence that optimised oxygen supply using ALI cultures directly affects the morphological differentiation and functional properties of intestinal epithelial cells in vitro

    Bridging health technology assessment (HTA) with multicriteria decision analyses (MCDA): field testing of the EVIDEM framework for coverage decisions by a public payer in Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Consistent healthcare decisionmaking requires systematic consideration of decision criteria and evidence available to inform them. This can be tackled by combining multicriteria decision analysis (MCDA) and Health Technology Assessment (HTA). The objective of this study was to field-test a decision support framework (EVIDEM), explore its utility to a drug advisory committee and test its reliability over time.</p> <p>Methods</p> <p>Tramadol for chronic non-cancer pain was selected by the health plan as a case study relevant to their context. Based on extensive literature review, a by-criterion HTA report was developed to provide synthesized evidence for each criterion of the framework (14 criteria for the MCDA Core Model and 6 qualitative criteria for the Contextual Tool). During workshop sessions, committee members tested the framework in three steps by assigning: 1) weights to each criterion of the MCDA Core Model representing individual perspective; 2) scores for tramadol for each criterion of the MCDA Core Model using synthesized data; and 3) qualitative impacts of criteria of the Contextual Tool on the appraisal. Utility and reliability of the approach were explored through discussion, survey and test-retest. Agreement between test and retest data was analyzed by calculating intra-rater correlation coefficients (ICCs) for weights, scores and MCDA value estimates.</p> <p>Results</p> <p>The framework was found useful by the drug advisory committee in supporting systematic consideration of a broad range of criteria to promote a consistent approach to appraising healthcare interventions. Directly integrated in the framework as a "by-criterion" HTA report, synthesized evidence for each criterion facilitated its consideration, although this was sometimes limited by lack of relevant data. Test-retest analysis showed fair to good consistency of weights, scores and MCDA value estimates at the individual level (ICC ranging from 0.676 to 0.698), thus lending some support for the reliability of the approach. Overall, committee members endorsed the inclusion of most framework criteria and revealed important areas of discussion, clarification and adaptation of the framework to the needs of the committee.</p> <p>Conclusions</p> <p>By promoting systematic consideration of all decision criteria and the underlying evidence, the framework allows a consistent approach to appraising healthcare interventions. Further testing and validation are needed to advance MCDA approaches in healthcare decisionmaking.</p

    DEGRADAÇÃO FOTOCATALÍTICA DE CORANTE UTILIZANDO-SE NANOCOMPÓSITO TiO2/ÓXIDO DE

    No full text
    In this work the sol-gel method was used to synthesize a nanocomposite containing TiO2 and graphene oxide (GO). The photocatalytic activity of the TiO2/GO nanocomposite was evaluated regarding the degradation of a reactive dye (reactive black 5) in aqueous solution using processes assisted by UV-A radiation. Under these conditions the nanocomposite showed higher degradation efficiency than the reference photocatalyst (Degussa P25 TiO2), mainly due to the high degradation capacity of the synthesized TiO2 nanoparticles. Although contradictory to several reports in the specialized literature, no synergistic effect was observed between the nanocomposite components

    Deoxynivalenol Affects Cell Metabolism and Increases Protein Biosynthesis in Intestinal Porcine Epithelial Cells (IPEC-J2): DON Increases Protein Biosynthesis

    No full text
    Deoxynivalenol (DON) is a toxin found in cereals as well as in processed products such as pasta, and causes substantial economic losses for stock breeding as it induces vomiting, reduced feeding, and reduced growth rates in piglets. Oxidative phosphorylation, TCA-cycle, transcription, and translation have been hypothesized to be leading pathways that are affected by DON. We used an application of high and low glucose to examine oxidative phosphorylation and anaerobic glycolysis. A change in the metabolic status of IPEC-J2 was observed and confirmed by microarray data. Measurements of oxygen consumption resulted in a significant reduction, if DON attacks from the basolateral. Furthermore, we found a dose-dependent effect with a significant reduction at 2000 ng/mL. In addition, SLC7A11 and PHB, the genes with the highest regulation in our microarray analyses under low glucose supply, were investigated and showed a variable regulation on protein level. Lactate production and glucose consumption was investigated to examine the impact of DON on anaerobic glycolysis and we observed a significant increase in 2000 blhigh and a decrease in 2000 aphigh. Interestingly, both groups as well as 200 blhigh showed a significant higher de novo protein synthesis when compared to the control. These results indicate the direct or indirect impact of DON on metabolic pathways in IPEC-J2

    Joint Theoretical and Experimental Study on the La Doping Process in In2O3: Phase Transition and Electrocatalytic Activity

    No full text
    In2O3 and La3+-doped In2O3 nanostructures were synthesized through a facile and fast chemical route based on the microwave-assisted hydrothermal method combined with rapid thermal treatment in a microwave oven. The presence of the La3+ doping process modifies the size and morphology of the In2O3 nanostructures and also stabilizes the rhombohedral (rh) In2O3 phase with respect to the most stable cubic (bcc) polymorph. X-ray diffraction (XRD) patterns and Rietveld refinements, Raman, UV–vis, and energy dispersive X-ray (EDX) spectroscopies, transmission electron (TEM) and field-emission scanning electron (FE-SEM) microscopies, as well as PL emissions have been performed. To complement and rationalize the experimental results, first-principle calculations, based on density functional theory, are carried out to obtain the formation energies of the In2O3 and bcc- and rh-In2O3-doped phases, their geometry and electronic properties. Theoretical results are able to explain the relative stabilization of the rh-phase with respect to the bcc-phase based on the analysis geometry changes and the electronic redistribution induced by the La3+ doping process. In addition, Wulff construction is employed to match the theoretical and experimental morphologies of the cubic phase. The synthesized samples were applied for the O2 evolution reaction (OER). The La3+-doped In2O3 film presents superior electrocatalytic activity, with an onset potential lower than the undoped In2O3 film that can be associated with the increase in electron density caused by the La3+ doping process. This study provides a versatile strategy for obtaining In2O3 and La3+-doped In2O3 nanostructures for practical applications

    Copper(II) Complexes with Tetradentate Piperazine-Based Ligands: DNA Cleavage and Cytotoxicity

    No full text
    Five-coordinate Cu(II) complexes, [Cu(Ln)X]ClO4/PF6, where Ln = piperazine ligands bearing two pyridyl arms and X = ClO4− for Ln = L1 (1-ClO4), L2 (2-ClO4), L3 (3-ClO4), and L6 (6-ClO4) as well as [Cu(Ln)Cl]PF6 for Ln = L1 (1-Cl), L4 (4-Cl), and L5 (5-Cl) have been synthesized and characterized by spectroscopic techniques. The molecular structures of the last two complexes were determined by X-ray crystallography. In aqueous acetonitrile solutions, molar conductivity measurements and UV-VIS spectrophotometric titrations of the complexes revealed the hydrolysis of the complexes to [Cu(Ln)(H2O)]2+ species. The biological activity of the Cu(II) complexes with respect to DNA cleavage and cytotoxicity was investigated. At micromolar concentration within 2 h and pH 7.4, DNA cleavage rate decreased in the order: 1-Cl ≈ 1-ClO4 &gt; 3-ClO4 ≥ 2-ClO4 with cleavage enhancements of up to 23 million. Complexes 4-Cl, 5-Cl, and 6-ClO4 were inactive. In order to elucidate the cleavage mechanism, the cleavage of bis(4-nitrophenyl)phosphate (BNPP) and reactive oxygen species (ROS) quenching studies were conducted. The mechanistic pathway of DNA cleavage depends on the ligand’s skeleton: while an oxidative pathway was preferable for 1-Cl/1-ClO4, DNA cleavage by 2-ClO4 and 3-ClO4 predominantly proceeds via a hydrolytic mechanism. Complexes 1-ClO4, 3-ClO4, and 5-Cl were found to be cytotoxic against A2780 cells (IC50 30–40 µM). In fibroblasts, the IC50 value was much higher for 3-ClO4 with no toxic effect
    corecore