468 research outputs found

    Partial wave treatment of Supersymmetric Dark Matter in the presence of CP - violation

    Get PDF
    We present an improved partial wave analysis of the dominant LSP annihilation channel to a fermion-antifermion pair which avoids the non-relativistic expansion being therefore applicable near thresholds and poles. The method we develop allows of contributions of any partial wave in the total angular momentum J in contrast to partial wave analyses in terms of the orbital angular momentum L of the initial state, which is usually truncated to p-waves, and yields very accurate results. The method is formulated in such a way as to allow easy handling of CP-violating phases residing in supersymmetric parameters. We apply this refined partial wave technique in order to calculate the neutralino relic density in the constrained MSSM (CMSSM) in the presence of CP-violating terms occurring in the Higgs - mixing parameter \mu and trilinear A coupling for large tanb. The inclusion of CP-violating phases in mu and A does not upset significantly the picture and the annihilation of the LSP's to a b b_bar, through Higgs exchange, is still the dominant mechanism in obtaining cosmologically acceptable neutralino relic densities in regions far from the stau-coannihilation and the `focus point'. Significant changes can occur if we allow for phases in the gaugino masses and in particular the gluino mass.Comment: 23 pages LaTeX, 10 eps figures, version to appear in PR

    Inflating Intersecting Branes and Remarks on the Hierarchy Problem

    Get PDF
    We generalize solutions of Einstein's equations for intersecting branes in higher dimensional spacetimes to the nonstatic case, modeling an expanding universe. The relation between the Hubble rate, the brane tensions, and the bulk cosmological constant is similar to the case of a single 3-brane in a 5-dimensional spacetime. However, because the bulk inflates as well as the branes, this class of solutions suffers from Newton's constant tending toward zero on the TeV brane, where the Randall-Sundrum mechanism should solve the weak scale hierarchy problem. The strength of gravity remains constant on the Planck brane, however.Comment: 10 pages, LaTeX. v2:Misprint in eq. (23) corrected; citations fixed and clarified relationship of our work to hep-th/9909053 and hep-th/9909076 v3: final version to appear in PLB. Corrected discussion of the time dependance of the 4-D Planck mass on the TeV brane. Some references added to earlier works on warped Kaluza-Klein compactification

    Exact Cross Sections for the Neutralino WIMP Pair-Annihilation

    Get PDF
    We derive a full set of exact, analytic expressions for the annihilation of the lightest neutralino pairs into all two-body tree-level final states in the framework of minimal supersymmetry. We make no simplifying assumptions about the neutralino nor about sfermion masses and mixings other than the absence of explicit CP--violating terms. The expressions should be particularly useful in computing the neutralino WIMP relic abundance without the usual approximation of partial wave expansion.Comment: LaTeX, 46 pages, no figures. Several minor typographical errors correcte

    Spectrum from the warped compactifications with the de Sitter universe

    Full text link
    We discuss the spectrum of the tensor metric perturbations and the stability of warped compactifications with the de Sitter spacetime in the higher-dimensional gravity. The spacetime structure is given in terms of the warped product of the non-compact direction, the spherical internal dimensions and the four-dimensional de Sitter spacetime. To realize a finite bulk volume, we construct the brane world model, using the cut-copy-paste method. Then, we compactify the spherical directions on the brane. In any case, we show the existence of the massless zero mode and the mass gap of it with massive Kaluza-Klein modes. Although the brane involves the spherical dimensions, no light massive mode is excited. We also investigate the scalar perturbations, and show that the model is unstable due to the existence of a tachyonic bound state, which seems to have the universal negative mass square, irrespective of the number of spacetime dimensions.Comment: Journal version (JHEP

    Inflation and Gauge Hierarchy in Randall-Sundrum Compactification

    Get PDF
    We obtain the general inflationary solutions for the slab of five-dimensional AdS spacetime where the fifth dimension is an orbifold S1/Z2S^1/Z_2 and two three-branes reside at its boundaries, of which the Randall-Sundrum model corresponds to the static limit. The investigation of the general solutions and their static limit reveals that the RS model recasts both the cosmological constant problem and the gauge hierarchy problem into the balancing problem of the bulk and the brane cosmological constants.Comment: 9 pages, revtex, minor changes and more references adde

    Effective Gauss-Bonnet Interaction in Randall-Sundrum Compactification

    Full text link
    The effective gravitational interaction below the Planck scale in the Randall-Sundrum world is shown to be the Gauss-Bonnet term. In this theory we find that there exists another static solution with a positive bulk cosmological constant. Also, there exist solutions for positive visible sector cosmological constant, which are needed for a later Friedman-Robertson-Walker universe.Comment: 10 pages, including 1 eps figur

    A Statistical Analysis of Supersymmetric Dark Matter in the MSSM after WMAP

    Full text link
    We study supersymmetric dark matter in the general flavor diagonal MSSM by means of an extensive random scan of its parameter space. We find that, in contrast with the standard mSUGRA lore, the large majority of viable models features either a higgsino or a wino-like lightest neutralino, and yields a relic abundance well below the WMAP bound. Among the models with neutralino relic density within the WMAP range, higgsino-like neutralinos are still dominant, though a sizeable fraction of binos is also present. In this latter case, relic density suppression mechanisms are shown to be essential in order to obtain the correct neutralino abundance. We then carry out a statistical analysis and a general discussion of neutralino dark matter direct detection and of indirect neutralino detection at neutrino telescopes and at antimatter search experiments. We point out that current data exclude only a marginal portion of the viable parameter space, and that models whose thermal relic abundance lies in the WMAP range will be significantly probed only at future direct detection experiments. Finally, we emphasize the importance of relic density enhancement mechanisms for indirect detection perspectives, in particular at future antimatter search experiments.Comment: 39 pages, 25 figure

    Refining the predictions of supersymmetric CP-violating models: A top-down approach

    Full text link
    We explore in detail the consequences of the CP-violating phases residing in the supersymmetric and soft SUSY breaking parameters in the approximation that family flavour mixings are ignored. We allow for non-universal boundary conditions and in such a consideration the model is described by twelve independent CP-violating phases and one angle which misaligns the vacuum expectation values (VEVs) of the Higgs scalars. We run two-loop renormalization group equations (RGEs), for all parameters involved, including phases, and we properly treat the minimization conditions using the one-loop effective potential with CP-violating phases included. We show that the two-loop running of phases may induce sizable effects for the electric dipole moments (EDMs) that are absent in the one-loop RGE analysis. Also important corrections to the EDMs are induced by the Higgs VEVs misalignment angle which are sizable in the large tanb region. Scanning the available parameter space we seek regions compatible with accelerator and cosmological data with emphasis on rapid neutralino annihilations through a Higgs resonance. It is shown that large CP-violating phases, as required in Baryogenesis scenarios, can be tuned to obtain agreement with WMAP3 cold dark matter constraints, EDMs and all available accelerator data, in extended regions of the parameter space which may be accessible to LHC.Comment: 41 pages, 22 eps figures. A reference added and a typo corrected; version to appear in JHE
    • 

    corecore