458 research outputs found

    Quantum statistics of interacting dimer spin systems

    Get PDF
    The compound TlCuCl3 represents a model system of dimerized quantum spins with strong interdimer interactions. We investigate the triplet dispersion as a function of temperature by inelastic neutron scattering experiments on single crystals. By comparison with a number of theoretical approaches we demonstrate that the description of Troyer, Tsunetsugu, and Wurtz [Phys. Rev. B 50, 13 515 (1994)] provides an appropriate quantum statistical model for dimer spin systems at finite temperatures, where many-body correlations become particularly important

    Exploring the fragile antiferromagnetic superconducting phase in CeCoIn5

    Get PDF
    CeCoIn5 is a heavy fermion Type-II superconductor which exhibits clear indications of Pauli-limited superconductivity. A variety of measurements give evidence for a transition at high magnetic fields inside the superconducting state, when the field is applied either parallel to or perpendicular to the c axis. When the field is perpendicular to the c axis, antiferromagnetic order is observed on the high-field side of the transition, with a magnetic wavevector of (q q 0.5), where q = 0.44 reciprocal lattice units. We show that this order remains as the magnetic field is rotated out of the basal plane, but the associated moment eventually disappears above 17 degrees, indicating that the anomalies seen with the field parallel to the c axis are not related to this magnetic order. We discuss the implications of this finding.Comment: Accepted Physical Review Letters, September 2010. 4 pages, 4 figure

    Fragmentation is crucial for the steady-state dynamics of actin filaments

    Get PDF
    Despite the recognition that actin filaments are important for numerous cellular processes, and decades of investigation, the dynamics of in vitro actin filaments are still not completely understood. Here, we follow the time evolution of the length distribution of labeled actin reporter filaments in an unlabeled F-actin solution via fluorescence microscopy. Whereas treadmilling and diffusive length fluctuations cannot account for the observed dynamics, our results suggest that at low salt conditions, spontaneous fragmentation is crucial

    Fractal Behaviour in the O(3) Model

    Get PDF
    We study domain formation in the two-dimensional O(3) model near criticality. The fractal dimension of these domains is determined with good statistical accuracy.Comment: 6 pages + 3 figures (concatenated PS files, uuencoded gz-compressed

    Competing superconducting and magnetic order parameters and field-induced magnetism in electron doped Ba(Fe1x_{1-x}Cox_{x})2_{2}As2_{2}

    Get PDF
    We have studied the magnetic and superconducting properties of Ba(Fe0.95_{0.95}Co0.05_{0.05})2_{2}As2_{2} as a function of temperature and external magnetic field using neutron scattering and muon spin rotation. Below the superconducting transition temperature the magnetic and superconducting order parameters coexist and compete. A magnetic field can significantly enhance the magnetic scattering in the superconducting state, roughly doubling the Bragg intensity at 13.5 T. We perform a microscopic modelling of the data by use of a five-band Hamiltonian relevant to iron pnictides. In the superconducting state, vortices can slow down and freeze spin fluctuations locally. When such regions couple they result in a long-range ordered antiferromagnetic phase producing the enhanced magnetic elastic scattering in agreement with experiments.Comment: 9 pages, 6 figure

    Flux pinning and phase separation in oxygen rich La2-xSrxCuO4+y system

    Full text link
    We have studied the magnetic characteristics of a series of super-oxygenated La2-xSrxCuO4+y samples. As shown in previous work, these samples spontaneously phase separate into an oxygen rich superconducting phase with a TC near 40 K and an oxygen poor magnetic phase that also orders near 40 K. All samples studied are highly magnetically reversible even to low temperatures. Although the internal magnetic regions of these samples might be expected to act as pinning sites, our present study shows that they do not favor flux pinning. Flux pinning requires a matching condition between the defect and the superconducting coherence length. Thus, our results imply that the magnetic regions are too large to act as pinning centers. This also implies that the much greater flux pinning in typical La2-xSrxCuO4 materials is the result of nanoscale inhomogeneities that grow to become the large magnetic regions in the super-oxygenated materials. The superconducting regions of the phase separated materials are in that sense cleaner and more homogenous than in the typical cuprate superconductor.Comment: 4 figures 8 pages Submitted to PR

    Quantitative comparison of filtering methods in lattice QCD

    Full text link
    We systematically compare filtering methods used to extract topological excitations (like instantons, calorons, monopoles and vortices) from lattice gauge configurations, namely APE-smearing and spectral decompositions based on lattice Dirac and Laplace operators. Each of these techniques introduces ambiguities, which can invalidate the interpretation of the results. We show, however, that all these methods, when handled with care, reveal very similar topological structures. Hence, these common structures are free of ambiguities and faithfully represent infrared degrees of freedom in the QCD vacuum. As an application we discuss an interesting power-law for the clusters of filtered topological charge.Comment: 6 pages, 18 plots in 5 figures; final version as published in EPJ A; section 4 was adde

    Multiferroicity in the generic easy-plane triangular lattice antiferromagnet RbFe(MoO4)2

    Full text link
    RbFe(MoO4)2 is a quasi-two-dimensional (quasi-2D) triangular lattice antiferromagnet (TLA) that displays a zero-field magnetically-driven multiferroic phase with a chiral spin structure. By inelastic neutron scattering, we determine quantitatively the spin Hamiltonian. We show that the easy-plane anisotropy is nearly 1/3 of the dominant spin exchange, making RbFe(MoO4)2 an excellent system for studying the physics of the model 2D easy-plane TLA. Our measurements demonstrate magnetic-field induced fluctuations in this material to stabilize the generic finite-field phases of the 2D XY TLA. We further explain how Dzyaloshinskii-Moriya interactions can generate ferroelectricity only in the zero field phase. Our conclusion is that multiferroicity in RbFe(MoO4)2, and its absence at high fields, results from the generic properties of the 2D XY TLA.Comment: 5 pages, 5 figures, accepted in PRB as a Rapid Communicatio

    Coexistence of ferromagnetism and superconductivity in the hybrid ruthenate-cuprate compound RuSr_2GdCu_2O_8 studied by muon spin rotation (\mu SR) and DC-magnetization

    Full text link
    We have investigated the magnetic and the superconducting properties of the hybrid ruthenate-cuprate compound RuSr_{2}GdCu_{2}O_{8} by means of zero-field muon spin rotation- (ZF-μ\mu SR) and DC magnetization measurements. The DC-magnetisation data establish that this material exhibits ferromagnetic order of the Ru-moments (μ(Ru)1μB\mu (Ru) \approx 1 \mu_{B}) below T_{Curie} = 133 K and becomes superconducting at a much lower temperature T_c = 16 K. The ZF-μ\mu SR experiments indicate that the ferromagnetic phase is homogeneous on a microscopic scale and accounts for most of the sample volume. They also suggest that the magnetic order is not significantly modified at the onset of superconductivity.Comment: improved version submitted to Phys. Rev.
    corecore