5,215 research outputs found

    Nonleptonic Weak Decays of B to D_s and D mesons

    Full text link
    Branching ratios and polarization amplitudes for B decaying to all allowed pseudoscalar, vector, axial-vector, scalar and tensor combinations of D_s and D mesons are calculated in the Isgur Scora Grinstein Wise (ISGW) quark model after assuming factorization. We find good agreement with other models in the literature and the limited experimental data and make predictions for as yet unseen decay modes. Lattice QCD results in this area are very limited. We make phenomenological observations on decays in to D_s(2317) and D_s(2460) and propose tests for determining the status and mixings of the axial mesons. We use the same approach to calculate branching ratios and polarization fraction for decays in to two D type mesons.Comment: 21 pages, 9 figures. v3: updated to reflect changes in published paper, conclusions unchanged (see source file for details). Added comments on factorization. v2: experimental data updated, references added, tables of results added, more on axial D_s mixing, added section on D D decay modes and typos correcte

    Simply Modeling Meson HQET

    Full text link
    A simple relativistic model of heavy-quark-light-quark mesons is proposed. In an expansion in inverse powers of the heavy quark mass we find that all zeroth and first order heavy quark symmetry relations are satisfied. The main results are: - the difference between the meson mass and the heavy quark mass plays a significant role even at zeroth order; - the slope of the Isgur-Wise function at the zero recoil point is typically less than 1-1; - the first order correction to the pseudoscalar decay constant is large and negative; - the four universal functions describing the first order corrections to the semileptonic decay form factors are small; - these latter corrections are quite insensitive to the choice of model parameters, and in particular to the effects of hyperfine mass splitting.Comment: 17 pages, LaTeX, 3 LaTeX figures in separate file, UTPT-92-16. This is the version published long ago but not previously archive

    Note on Tests of the Factorization Hypothesis and the Determination of Meson Decay Constants

    Full text link
    We discuss various tests of the factorization hypothesis making use of the close relationship between semi-leptonic and factorized nonleptonic decay amplitudes. It is pointed out that factorization leads to truely model-independent predictions for the ratio of nonleptonic to semi-leptonic decay rates, if in the nonleptonic decay a spin one meson of arbitrary mass or a pion take the place of the lepton pair. Where the decay constants of those mesons are known, these predictions represent ideal tests of the factorization hypothesis. In other cases they may be used to extract the decay constants. Currently available data on the decays Bˉ0D+π,D+π,D+ϱ,D+ϱ\bar B^0 \to D^+\pi^-,\, D^{*+}\pi^-,\, D^+\varrho^-,\, D^{*+}\varrho^- are shown to be in excellent agreement with the factorization results. A weighted average of the four independent values for the QCD coefficient a1a_1 extracted from the data gives a1=1.15±0.06a_1=1.15\pm 0.06 suggesting that it may be equal to the Wilson coefficient c1(μ)c_1(\mu) evaluated at the scale μ=mb\mu = m_b.Comment: (9 pages, ReVTeX, no figures), HD-THEP-92-3

    Infrared singularities of scattering amplitudes in perturbative QCD

    Full text link
    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficients of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.Comment: 4 pages; v2: typo in eq. (12) fixed, references updated; v3: additional term in (12

    Determinations of |V_ub| and |V_cb| from measurements of B -> X_u,c\ell\nu differential decay rates

    Full text link
    Methods are described in the framework of light-cone expansion which allow one to determine the Cabibbo-Kobayashi-Maskawa matrix elements |V_ub| and |V_cb| from measurements of the differential decay rates as a function of the scaling variables in the inclusive semileptonic decays of B mesons. By these model-independent methods the dominant hadronic uncertainties can be avoided and the B -> X_u\ell\nu decay can be very efficiently differentiated from the B -> X_c\ell\nu decay, which may lead to precise determinations of |V_ub| and |V_cb|.Comment: 11 pages, 2 figures, version as published in Mod. Phys. Lett. A, more discussion, references added, title chang

    The emission of energetic electrons from the complex streamer corona adjacent to leader stepping

    Full text link
    We here propose a model to capture the complexity of the streamer corona adjacent to leader stepping and relate it to the production of energetic electrons serving as a source of X-rays and γ\gamma-rays, manifesting in terrestrial gamma-ray flashes (TGFs). During its stepping, the leader tip is accompanied by a corona consisting of multitudinous streamers perturbing the air in its vicinity and leaving residual charge behind. We explore the relative importance of air perturbations and preionization on the production of energetic run-away electrons by 2.5D cylindrical Monte Carlo particle simulations of streamers in ambient fields of 16 kV cm1^{-1} and 50 kV cm1^{-1} at ground pressure. We explore preionization levels between 101010^{10} m3^{-3} and 101310^{13} m3^{-3}, channel widths between 0.5 and 1.5 times the original streamer widths and air perturbation levels between 0\% and 50\% of ambient air. We observe that streamers in preionized and perturbed air accelerate more efficiently than in non-ionized and uniform air with air perturbation dominating the streamer acceleration. We find that in unperturbed air preionization levels of 101110^{11} m3^{-3} are sufficient to explain run-away electron rates measured in conjunction with terrestrial gamma-ray flashes. In perturbed air, the production rate of runaway electrons varies from 101010^{10} s1^{-1} to 101710^{17} s1^{-1} with maximum electron energies from some hundreds of eV up to some hundreds of keV in fields above and below the breakdown strength. In the presented simulations the number of runaway electrons matches with the number of energetic electrons measured in alignment with the observations of terrestrial gamma-ray flashes. Conclusively, the complexity of the streamer zone ahead of leader tips allows explaining the emission of energetic electrons and photons from streamer discharges.Comment: 29 pages, 11 figures, 2 table

    Decays of bottom mesons emitting tensor meson in final state using ISGW II model

    Full text link
    In this paper, we investigate phenomenologically two-body weak decays of the bottom mesons emitting pseudoscalar/vector meson and a tensor meson. Form factors are obtained using the improved ISGW II model. Consequently, branching ratios for the CKM-favored and CKM-suppressed decays are calculated.Comment: 32 pages, to be published in Phys. Rev.

    Slope of the Isgur-Wise function in the heavy mass limit of quark models \`a la Bakamjian-Thomas

    Get PDF
    The slope of the Isgur-Wise function for ground state mesons is evaluated for the heavy mass limit of quark models \`a la Bakamjian-Thomas, which has been previously discussed by us in general terms. A full calculation in various spectroscopic models with relativistic kinetic energy gives a rather stable result ρ21\rho^2 \approx 1, much lower than previous estimates. Attention is paid to a careful comparison of this result with the ones of QCD fundamental methods (lattice QCD, QCD sum rules) and with experimental data.Comment: 15 pages, Latex, AMS-LaTe

    Second Order Power Corrections in the Heavy Quark Effective Theory I. Formalism and Meson Form Factors

    Full text link
    In the heavy quark effective theory, hadronic matrix elements of currents between two hadrons containing a heavy quark are expanded in inverse powers of the heavy quark masses, with coefficients that are functions of the kinematic variable vvv\cdot v'. For the ground state pseudoscalar and vector mesons, this expansion is constructed at order 1/mQ21/m_Q^2. A minimal set of universal form factors is defined in terms of matrix elements of higher dimension operators in the effective theory. The zero recoil normalization conditions following from vector current conservation are derived. Several phenomenological applications of the general results are discussed in detail. It is argued that at zero recoil the semileptonic decay rates for BDνB\to D\,\ell\,\nu and BDνB\to D^*\ell\,\nu receive only small second order corrections, which are unlikely to exceed the level of a few percent. This supports the usefulness of the heavy quark expansion for a reliable determination of VcbV_{cb}.Comment: (34 pages, REVTEX, two postscript figures available upon request), SLAC-PUB-589
    corecore