9,478 research outputs found

    A FLUKA study towards predicting hadron-specific damage due to high-energy hadrons in inorganic crystals for calorimetry

    Full text link
    Hadrons emerging from high-energy collisions, as it is the case for protons and pions at the CERN Large Hadron Collider, can produce a damage to inorganic crystals that is specific and cumulative. The mechanism is well understood as due to bulk damage from fragments caused by fission. In this paper, the existing experimental evidence for lead tungstate, LYSO and cerium fluoride is summarised, a study using FLUKA simulations is described and its results are discussed and compared to measurements. The outcome corroborates the confidence in the predictive power of such simulations applied to inorganic scintillators, which are relevant to their adoption as scintillators for calorimetry.Comment: 15 pages, 8 figure

    Thioxoethenylidene (CCS) as a bridging ligand

    Get PDF
    The reaction of [Mo(≡CBr)(CO)2(Tp*)] (Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate) with [Fe2(μ-SLi)2(CO)6] affords, inter alia, the unsymmetrical binuclear thioxoethenylidene complex [Mo2(μ,σ(C):η2(C′S)-CCS)(CO)4(Tp*)2], which may be more directly obtained from [Mo(≡CBr)(CO)2(Tp*)] and Li2S. The reaction presumably proceeds via the intermediacy of the bis(alkylidynyl)thioether complex S{C≡Mo(CO)2(Tp*)}2, which was, however, not directly observed but explored computationally and found to lie 78.6 kJ mol–1 higher in energy than the final thioxoethenylidene product. Computational interrogation of the molecules [M2(μ-C2S)(CO)2(Tp*)2] (M = Mo, W, Re, Os) reveals three plausible coordination modes for a thioxoethenylidene bridge which involve a progressive strengthening of the C–C bond and weakening of the M–C and M–S bonds, as might be expected from simple effective atomic number considerations.This work was supported by the Australian Research Council (DP130102598 and DP110101611)

    On the Regularity of Optimal Transportation Potentials on Round Spheres

    Full text link
    In this paper the regularity of optimal transportation potentials defined on round spheres is investigated. Specifically, this research generalises the calculations done by Loeper, where he showed that the strong (A3) condition of Trudinger and Wang is satisfied on the round sphere, when the cost-function is the geodesic distance squared. In order to generalise Loeper's calculation to a broader class of cost-functions, the (A3) condition is reformulated via a stereographic projection that maps charts of the sphere into Euclidean space. This reformulation subsequently allows one to verify the (A3) condition for any case where the cost-fuction of the associated optimal transportation problem can be expressed as a function of the geodesic distance between points on a round sphere. With this, several examples of such cost-functions are then analysed to see whether or not they satisfy this (A3) condition.Comment: 24 pages, 4 figure

    The use of Bayesian inversion to resolve plasma equilibrium

    No full text
    Recently, bayesian probability theory has been used at a number of experiments to fold uncertainties and interdependencies in the diagnostic data and forward models, together with prior knowledge of the state of the plasma, to increase accuracy of inferred physics variables. A new probabilistic framework, MINERVA, based on bayesian graphical models, has been used at JET and W7-AS to yield predictions of internal magnetic structure. A feature of the framework is the bayesian inversion for poloidal magnetic flux without the need for an explicit equilibrium assumption. Building on this, we discuss results from a new project to develop bayesian inversion tools that aim to (1) distinguish between competing equilibrium theories, which capture different physics, using the MAST spherical tokamak, and (2) test the predictions of MHD theory, particularly mode structure, using the H-1 Heliac. Specifically, we report on correction of the motional Stark effect, pickup coils, flux-loop constrained bayesian inferred equilibrium for varying toroidal flux.This work was jointly funded by the Australian Government through International Science Linkages Grant No. CG130047, the Australian National University, the United Kingdom Engineering and Physical Sciences Research Council, and by the European Communities under the contract of Association between EURATOM and CCFE

    Constraints on Parity-Even Time Reversal Violation in the Nucleon-Nucleon System and Its Connection to Charge Symmetry Breaking

    Full text link
    Parity-even time reversal violation (TRV) in the nucleon-nucleon interaction is reconsidered. The TRV ρ\rho-exchange interaction on which recent analyses of measurements are based is necessarily also charge-symmetry breaking (CSB). Limits on its strength gˉρ\bar{g}_\rho relative to regular ρ\rho-exchange are extracted from recent CSB experiments in neutron-proton scattering. The result gˉρ6.7×103\bar{g}_\rho\le 6.7\times 10^{-3} (95% CL) is considerably lower than limits inferred from direct TRV tests in nuclear processes. Properties of a1a_1-exchange and limit imposed by the neutron EDM are briefly discussed.Comment: RevTex, 8 pages. Factor ten error in cited neutron EDM corrected, discussion and two references adde

    Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests

    Full text link
    A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CERN Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a Geant4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototype's energy resolution.Comment: 6 pages, 6 figures, Submitted to NIM

    HV/HR-CMOS sensors for the ATLAS upgrade—concepts and test chip results

    Get PDF
    In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5× 1034 cm−2 s−1, more than twice the expected Phase I . The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R&D effort, to explore the performance and radiation hardness of this technology. In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given
    corecore