989 research outputs found

    Adsorption and desorption in confined geometries: a discrete hopping model

    Full text link
    We study the adsorption and desorption kinetics of interacting particles moving on a one-dimensional lattice. Confinement is introduced by limiting the number of particles on a lattice site. Adsorption and desorption are found to proceed at different rates, and are strongly influenced by the concentration-dependent transport diffusion. Analytical solutions for the transport and self-diffusion are given for systems of length 1 and 2 and for a zero-range process. In the last situation the self- and transport diffusion can be calculated analytically for any length.Comment: Published in EPJ ST volume "Brownian Motion in Confined Geometries

    Comment on "Generalized exclusion processes: Transport coefficients"

    Full text link
    In a recent paper Arita et al. [Phys. Rev. E 90, 052108 (2014)] consider the transport properties of a class of generalized exclusion processes. Analytical expressions for the transport-diffusion coefficient are derived by ignoring correlations. It is claimed that these expressions become exact in the hydrodynamic limit. In this Comment, we point out that (i) the influence of correlations upon the diffusion does not vanish in the hydrodynamic limit, and (ii) the expressions for the self- and transport diffusion derived by Arita et al. are special cases of results derived in [Phys. Rev. Lett. 111, 110601 (2013)].Comment: (citation added, published version

    Diffusion of interacting particles in discrete geometries

    Full text link
    We evaluate the self-diffusion and transport diffusion of interacting particles in a discrete geometry consisting of a linear chain of cavities, with interactions within a cavity described by a free-energy function. Exact analytical expressions are obtained in the absence of correlations, showing that the self-diffusion can exceed the transport diffusion if the free-energy function is concave. The effect of correlations is elucidated by comparison with numerical results. Quantitative agreement is obtained with recent experimental data for diffusion in a nanoporous zeolitic imidazolate framework material, ZIF-8.Comment: 5 pages main text (3 figures); 9 pages supplemental material (2 figures). (minor changes, published version

    2D Lattice Materials for Low Energy Actuation

    Get PDF

    Hysteresis and re-entrant melting of a self-organized system of classical particles confined in a parabolic trap

    Full text link
    A self-organized system composed of classical particles confined in a two-dimensional parabolic trap and interacting through a potential with a short-range attractive part and long-range repulsive part is studied as function of temperature. The influence of the competition between the short-range attractive part of the inter-particle potential and its long-range repulsive part on the melting temperature is studied. Different behaviors of the melting temperature are found depending on the screening length (κ\kappa) and the strength (BB) of the attractive part of the inter-particle potential. A re-entrant behavior and a thermal induced phase transition is observed in a small region of (κ,B\kappa,B)-space. A structural hysteresis effect is observed as a function of temperature and physically understood as due to the presence of a potential barrier between different configurations of the system.Comment: 8 pages, 6 figure

    Correlation between the optical veiling and accretion properties: A case study of the classical T Tauri star DK Tau

    Full text link
    Classical T Tauri stars (cTTs) accrete from their circumstellar disk. The material falls onto the stellar surface, producing an accretion shock, which generates veiling in a star's spectra. In addition, the shock causes a localized accretion spot at the level of the chromosphere. Our goal is to investigate the accretion, particularly the mass accretion rates (Macc), for the cTTs DK Tau, over two periods of 17 and 29 days, using two different procedures for comparison purposes. The first method relies on the derivation of the accretion luminosity via accretion-powered emission lines. The second compares the variability of the optical veiling with accretion shock models to determine mass accretion rates. We used observations taken in 2010 and 2012 with the ESPaDOnS spectropolarimeter at the CFHT. We find peak values of the veiling (at 550 nm) ranging from 0.2 to 1.3, with a steeper trend across the wavelength range for higher peak values. When using the accretion-powered emission lines, we find mass accretion rate values ranging from log(Macc[Msol/yr]) = -8.20 to log(Macc[Msol/yr]) = -7.40. This agrees with the values found in the literature, as well as the values calculated using the accretion shock models and the veiling. In addition, we identify a power-law correlation between the values of the accretion luminosity and the optical veiling. For the 2010 observations, using the values of the filling factors (which represent the area of the star covered by an accretion spot) derived from the shock models, we infer that the accretion spot was located between +45 degrees and +75 degrees in latitude. We show that both methods of determining the mass accretion rate yield similar results. We also present a helpful means of confirming the accretion luminosity values by measuring the veiling at a single wavelength in the optical

    Diffusion of interacting particles in discrete geometries: equilibrium and dynamical properties

    Full text link
    We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013)]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition state theory. Which expression should be used depends on the strength of the inter-particle interactions. Analytical expressions for the self- and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a one over length dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations, if the particles are not strongly interacting.Comment: (18 pages, 16 figures, published version

    Minor influence of humeral component size on torsional stiffness of the Souter-Strathclyde total elbow prosthesis

    Get PDF
    The use of Souter-Strathclyde total elbow prostheses is a well-studied replacement therapy for reconstruction of the elbow, but loosening of the humeral component is still of concern at long-term follow-up. In this study we looked at the effect of humeral component size and bone mineral density with respect to the bone size, torsional stiffness and torque to failure in cadaveric bones. Fourteen cadaveric humeri were available for testing purposes and four different humeral component size categories were used. First, we calculated the bone quality using dual-energy X-ray absorptiometry (DEXA). The torsional stiffness of the prosthetic humeri was measured during two mechanical tests: Firstly, the applied torque was recorded during a torsion fatigue test. The change of torsional stiffness between the tenth and last cycle was calculated. Secondly, a simple torsion test was performed and the torque to failure was recorded. No significant differences in outcome were seen between sizes of humeral components, even after correction for the bone size. Torsional stiffness and torque to failure were significantly correlated with bone mineral density and not with component size. In conclusion, bone quality seems to be a major eminent factor in the fixation of the humeral component in elbow replacement surgery

    Low-temperature structural model of hcp solid C70_{70}

    Full text link
    We report intermolecular potential-energy calculations for solid C_70{70} and determine the optimum static orientations of the molecules at low temperature; we find them to be consistent with the monoclinic structural model proposed by us in an earlier report [Solid State Commun. {\bf 105), 247 (1998)]. This model indicates that the C_5 axis of the molecule is tilted by an angle ≈\approx18^o from the monoclinic b axis in contrast with the molecular orientation proposed by Verheijen {\it et al.} [J. Chem. Phys. {\bf 166}, 287 (1992)] where the C_5 axis is parallel to the monoclinic b axis. In this calculation we have incorporated the effective bond charge Coulomb potential together with the Lennard-Jones potential between the molecule at the origin of the monoclinic unit cell and its six nearest neighbours, three above and three below. The minimum energy configuration for the molecular orientations turns out to be at θ\theta=18^o, ϕ\phi=8^o, and ψ\psi=5^o, where θ\theta, ϕ\phi, and ψ\psi define the molecular orientations.Comment: ReVTeX (4 pages) + 2 PostScript figure

    Comorbidity and risk of infection among patients with hip fracture: a Danish population-based cohort study

    Get PDF
    Summary: Impact of comorbidity on infection risk among hip fracture patients is unclear. We found high incidence of infection. Comorbidity was an important risk factor for infection up to 1 year after surgery. Results indicates a need for additional investment in pre- and postoperative programs that assist patients with high comorbidity. Purpose: Comorbidity level and incidence of infection have increased among older patients with hip fracture. The impact of comorbidity on infection risk is unclear. We conducted a cohort study examining the absolute and relative risks of infection in relation to comorbidity level among hip fracture patients. Methods: Utilizing Danish population-based medical registries, we identified 92,600 patients aged >= 65 years undergoing hip fracture surgery between 2004 and 2018. Comorbidity was categorized by Charlson comorbidity index scores (CCI): none (CCI = 0), moderate (CCI = 1-2), or severe (CCI >= 3). Primary outcome was any hospital-treated infection. Secondary outcomes were hospital-treated pneumonia, urinary tract infection, sepsis, reoperation due to surgical-site infection (SSI), and a composite of any hospital- or community-treated infection. We calculated cumulative incidence and hazard ratios (aHRs) adjusted for age, sex, and surgery year, including 95% confidence intervals (CIs). Results: Prevalence of moderate and severe comorbidity was 40% and 19%, respectively. Incidence of any hospital-treated infection increased with comorbidity level within 0-30 days (none 13% vs. severe 20%) and 0-365 days (none 22% vs. 37% severe). Patients with moderate and severe comorbidity, compared to no comorbidity, had aHRs of 1.3 (CI: 1.3-1.4) and 1.6 (CI: 1.5-1.7) within 0-30 days, and 1.4 (CI: 1.4-1.5) and 1.9 (CI: 1.9-2.0) within 0-365, respectively. Highest incidence was observed for any hospital- or community-treated infection (severe 72%) within 0-365 days. Highest aHR was observed for sepsis within 0-365 days (severe vs. none: 2.7 (CI: 2.4-2.9)). Conclusion: Comorbidity is an important risk factor for infection up to 1 year after hip fracture surgery.Orthopaedics, Trauma Surgery and Rehabilitatio
    • …
    corecore