38 research outputs found

    Tracking environmental trends in the Great Bay Estuarine System through comparisons of historical and present-day green and red algal community structure and nutrient content

    Get PDF
    Monitoring macroalgae populations is an effective means of detecting long term water quality changes in estuarine systems. To investigate the environmental status of New Hampshire’s Great Bay National Estuarine Research Reserve, this study assessed the abundance/distribution of macrophytes, particularly Gracilaria and Ulva species, relative to eutrophication patterns; compared historical (1970s-1990s) and current algal biomass/cover at several sites; and compared Ulva and Gracilaria tissue N/P content to ambient and historical levels. Ulva and Gracilaria biomass/cover have increased significantly at several sites. Cover by Ulva species, at seasonal maxima, was over 90 times the value recorded in the 1970s at Lubberland Creek, and exceeded 50% at all sites in the upper estuary. Gracilaria cover was greater than 25% at Depot Road in the upper estuary, whereas the historical measure was 1%. Sequencing of ITS2, rbcL and CO1 revealed the presence of previously undetected Ulva and Gracilaria species, including Gracilaria vermiculophylla (Ohmi) Papenfuss, an invasive species of Asian origin. Gracilaria vermiculophylla has exceeded G. tikvahiae as the dominant Gracilaria species in Great Bay. Historical voucher specimen screening suggests G. vermiculophylla was introduced as recently as 2003. Nitrogen and phosphorus levels are elevated in the estuary. We should expect continued seasonal nuisance algal blooms

    Southern expansion of the brown alga Colpomenia peregrina Sauvageau (Scytosiphonales) in the Northwest Atlantic Ocean

    Get PDF
    Blackler first recorded Colpomenia peregrina in the Northwest Atlantic based on collections from Nova Scotia, Canada. Five decades later we found large quantities of C. peregrina in Maine, USA, even though it was absent during earlier floristic studies in this region. Thus, C. peregrina has undergone a rapid southern expansion along the Northwest Atlantic coast. While the causes of such an expansion are unknown, it could have a major effect on both shellfish cultivation and native seaweeds within New England because of competitive interactions and increased drag

    Effect of Deutetrabenazine on Chorea Among Patients With Huntington Disease A Randomized Clinical Trial

    Get PDF
    Importance Deutetrabenazine is a novel molecule containing deuterium, which attenuates CYP2D6 metabolism and increases active metabolite half-lives and may therefore lead to stable systemic exposure while preserving key pharmacological activity. Objective To evaluate efficacy and safety of deutetrabenazine treatment to control chorea associated with Huntington disease. Design, Setting, and Participants Ninety ambulatory adults diagnosed with manifest Huntington disease and a baseline total maximal chorea score of 8 or higher (range, 0-28; lower score indicates less chorea) were enrolled from August 2013 to August 2014 and randomized to receive deutetrabenazine (n = 45) or placebo (n = 45) in a double-blind fashion at 34 Huntington Study Group sites. Interventions Deutetrabenazine or placebo was titrated to optimal dose level over 8 weeks and maintained for 4 weeks, followed by a 1-week washout. Main Outcomes and Measures Primary end point was the total maximal chorea score change from baseline (the average of values from the screening and day-0 visits) to maintenance therapy (the average of values from the week 9 and 12 visits) obtained by in-person visits. This study was designed to detect a 2.7-unit treatment difference in scores. The secondary end points, assessed hierarchically, were the proportion of patients who achieved treatment success on the Patient Global Impression of Change (PGIC) and on the Clinical Global Impression of Change (CGIC), the change in 36-Item Short Form– physical functioning subscale score (SF-36), and the change in the Berg Balance Test. Results Ninety patients with Huntington disease (mean age, 53.7 years; 40 women [44.4%]) were enrolled. In the deutetrabenazine group, the mean total maximal chorea scores improved from 12.1 (95% CI, 11.2-12.9) to 7.7 (95% CI, 6.5-8.9), whereas in the placebo group, scores improved from 13.2 (95% CI, 12.2-14.3) to 11.3 (95% CI, 10.0-12.5); the mean between-group difference was –2.5 units (95% CI, –3.7 to –1.3) (P < .001). Treatment success, as measured by the PGIC, occurred in 23 patients (51%) in the deutetrabenazine group vs 9 (20%) in the placebo group (P = .002). As measured by the CGIC, treatment success occurred in 19 patients (42%) in the deutetrabenazine group vs 6 (13%) in the placebo group (P = .002). In the deutetrabenazine group, the mean SF-36 physical functioning subscale scores decreased from 47.5 (95% CI, 44.3-50.8) to 47.4 (44.3-50.5), whereas in the placebo group, scores decreased from 43.2 (95% CI, 40.2-46.3) to 39.9 (95% CI, 36.2-43.6), for a treatment benefit of 4.3 (95% CI, 0.4 to 8.3) (P = .03). There was no difference between groups (mean difference of 1.0 unit; 95% CI, –0.3 to 2.3; P = .14), for improvement in the Berg Balance Test, which improved by 2.2 units (95% CI, 1.3-3.1) in the deutetrabenazine group and by 1.3 units (95% CI, 0.4-2.2) in the placebo group. Adverse event rates were similar for deutetrabenazine and placebo, including depression, anxiety, and akathisia. Conclusions and Relevance Among patients with chorea associated with Huntington disease, the use of deutetrabenazine compared with placebo resulted in improved motor signs at 12 weeks. Further research is needed to assess the clinical importance of the effect size and to determine longer-term efficacy and safety

    Digitization Workflows for Flat Sheets and Packets of Plants, Algae, and Fungi

    Get PDF
    Effective workflows are essential components in the digitization of biodiversity specimen collections. To date, no comprehensive, community-vetted workflows have been published for digitizing flat sheets and packets of plants, algae, and fungi, even though latest estimates suggest that only 33% of herbarium specimens have been digitally transcribed, 54% of herbaria use a specimen database, and 24% are imaging specimens. In 2012, iDigBio, the U.S. National Science Foundation’s (NSF) coordinating center and national resource for the digitization of public, nonfederal U.S. collections, launched several working groups to address this deficiency. Here, we report the development of 14 workflow modules with 7–36 tasks each. These workflows represent the combined work of approximately 35 curators, directors, and collections managers representing more than 30 herbaria, including 15 NSF-supported plant-related Thematic Collections Networks and collaboratives. The workflows are provided for download as Portable Document Format (PDF) and Microsoft Word files. Customization of these workflows for specific institutional implementation is encouraged

    Benthic Ecology in an Estuarine Tidal Rapid

    No full text

    A morphological and molecular investigation of the Porphyra purpurea (Bangiales, Rhodophyta) complex in the Northwest Atlantic

    No full text
    Historically, Porphyra purpurea (Roth) C.Agardh was the only monostromatic species recorded from the Northwest Atlantic that had a sectored male/female blade. Recently, two additional monostromatic taxa with sectored blades have been reported from this region. One is the newly described species P. birdiae Neefus et Mathieson and the other is P. katadae A.Miura, an introduced Asian species. In this study, a combination of molecular, morphological, and ecological evaluations have been used to characterize the identities, distributions, and relationships of these three taxa with sectored blades. Interspecific divergence in rbcL sequences ranged from 7.2% to 9.6%, while intraspecific variability in rbcL, ITS1, and SSU was very low (0-2 bp). While P. purpurea has a broad distribution from northern Nova Scotia (Canada) to western Long Island Sound (New York, USA), P. birdiae occurs only north of Mount Desert Island (Maine, USA) and P. katadae is restricted to an area south of Cape Cod (Massachusetts, USA). The three species can be further distinguished by combinations of blade thickness, colour, intertidal position, substratum, and seasonality. Molecular variability in Northwest Atlantic Porphyra purpurea populations, showed that several specimens were found to have rbcL sequences 100% identical to a GenBank accession for P. rediviva Stiller et Waaland, while other specimens were 100% identical to the neotype of P. purpurea with 1 bp substitution between the two species. Comparison of the rbcL and ITS I sequences of the holotype and isotypes of P. rediviva were 100% identical to the neotype and isoneotype of P. purpurea. Based upon these molecular findings and the failure of morphological and ecological features to clearly delineate the two taxa, P. rediviva is synonymized with P. purpurea

    Cryptic diversity of Ulva (Ulvales, Chlorophyta) in the Northwest Atlantic: Introduced and indigenous distromatic species

    No full text
    Distromatic foliose blades of the algal genus Ulva are notoriously difficult to identify due to their simple morphologies and few diagnostic characteristics that often exhibit intraspecific variation and interspecific overlap. Hence, species differentiation is difficult and diversity estimates are often inaccurate. Two major goals of this study were to assess the diversity of distromatic Ulva spp. in the Great Bay Estuarine System (GBES) of New Hampshire and Maine, USA, and to compare historical and present day records of these species. Molecular analysis (using ITS sequences) of field-collected specimens revealed four distinct taxa: Ulva lactuca, U. rigida, U. compressa, and U. pertusa. Prior to molecular screening, Ulva lactuca was the only distromatic Ulva species reported for the GBES. Ulva pertusa and the foliose form of U. compressa are newly recorded for the Northwest Atlantic, and the range of U. rigida has been extended. Molecular analysis of historical herbarium voucher specimens indicates that U. rigida, U. pertusa, and the foliose form of U. compressa have been present in the GBES since at least 1966, 1967, and 1972, respectively. The distromatic morphotype of U. compressa is found only in low salinity areas, which suggests that salinity may influence its morphological development. Molecular and morphological evaluations are critical if we are to distinguish between cryptic taxa, accurately assess biodiversity, and effectively monitor the spread of non-indigenous macroalgae
    corecore