29 research outputs found

    The One-More-RSA-Inversion Problems and the Security of Chaum\u27s Blind Signature Scheme

    Get PDF
    We introduce a new class of computational problems which we call the ``one-more-RSA-inversion\u27\u27 problems. Our main result is that two problems in this class, which we call the chosen-target and known-target inversion problems respectively, have polynomially-equivalent computational complexity. We show how this leads to a proof of security for Chaum\u27s RSA-based blind signature scheme in the random oracle model based on the assumed hardness of either of these problems. We define and prove analogous results for ``one-more-discrete-logarithm\u27\u27 problems. Since the appearence of the preliminary version of this paper, the new problems we have introduced have found other uses as well

    Breaking Message Integrity of an End-to-End Encryption Scheme of LINE

    Get PDF
    In this paper, we analyze the security of an end-to-end encryption scheme (E2EE) of LINE, a.k.a Letter Sealing. LINE is one of the most widely-deployed instant messaging applications, especially in East Asia. By a close inspection of their protocols, we give several attacks against the message integrity of Letter Sealing. Specifically, we propose forgery and impersonation attacks on the one-to-one message encryption and the group message encryption. All of our attacks are feasible with the help of an end-to-end adversary, who has access to the inside of the LINE server (e.g. service provider LINE themselves). We stress that the main purpose of E2EE is to provide a protection against the end-to-end adversary. In addition, we found some attacks that even do not need the help of E2E adversary, which shows a critical security flaw of the protocol. Our results reveal that the E2EE scheme of LINE do not sufficiently guarantee the integrity of messages compared to the state-of-the-art E2EE schemes such as Signal, which is used by WhatApp and Facebook Messenger. We also provide some countermeasures against our attacks. We have shared our findings with LINE corporation in advance. The LINE corporation has confirmed our attacks are valid as long as the E2E adversary is involved, and officially recognizes our results as a vulnerability of encryption break

    Key Rotation for Authenticated Encryption

    Get PDF
    A common requirement in practice is to periodically rotate the keys used to encrypt stored data. Systems used by Amazon and Google do so using a hybrid encryption technique which is eminently practical but has questionable security in the face of key compromises and does not provide full key rotation. Meanwhile, symmetric updatable encryption schemes (introduced by Boneh et al. CRYPTO 2013) support full key rotation without performing decryption: ciphertexts created under one key can be rotated to ciphertexts created under a different key with the help of a re-encryption token. By design, the tokens do not leak information about keys or plaintexts and so can be given to storage providers without compromising security. But the prior work of Boneh et al. addresses relatively weak confidentiality goals and does not consider integrity at all. Moreover, as we show, a subtle issue with their concrete scheme obviates a security proof even for confidentiality against passive attacks. This paper presents a systematic study of updatable Authenticated Encryption (AE). We provide a set of security notions that strengthen those in prior work. These notions enable us to tease out real-world security requirements of different strengths and build schemes that satisfy them efficiently. We show that the hybrid approach currently used in industry achieves relatively weak forms of confidentiality and integrity, but can be modified at low cost to meet our stronger confidentiality and integrity goals. This leads to a practical scheme that has negligible overhead beyond conventional AE. We then introduce re-encryption indistinguishability, a security notion that formally captures the idea of fully refreshing keys upon rotation. We show how to repair the scheme of Boneh et al., attaining our stronger confidentiality notion. We also show how to extend the scheme to provide integrity, and we prove that it meets our re- encryption indistinguishability notion. Finally, we discuss how to instantiate our scheme efficiently using off-the-shelf cryptographic components (AE, hashing, elliptic curves). We report on the performance of a prototype implementation, showing that fully secure key rotations can be performed at a throughput of approximately 116 kB/s

    (R)CCA Secure Updatable Encryption with Integrity Protection

    Get PDF
    An updatable encryption scheme allows a data host to update ciphertexts of a client from an old to a new key, given so-called update tokens from the client. Rotation of the encryption key is a common requirement in practice in order to mitigate the impact of key compromises over time. There are two incarnations of updatable encryption: One is ciphertext-dependent, i.e. the data owner has to (partially) download all of his data and derive a dedicated token per ciphertext. Everspaugh et al. (CRYPTO\u2717) proposed CCA and CTXT secure schemes in this setting. The other, more convenient variant is ciphertext-independent, i.e., it allows a single token to update all ciphertexts. However, so far, the broader functionality of tokens in this setting comes at the price of considerably weaker security: the existing schemes by Boneh et al. (CRYPTO\u2713) and Lehmann and Tackmann (EUROCRYPT\u2718) only achieve CPA security and provide no integrity protection. Arguably, when targeting the scenario of outsourcing data to an untrusted host, plaintext integrity should be a minimal security requirement. Otherwise, the data host may alter or inject ciphertexts arbitrarily. Indeed, the schemes from BLMR13 and LT18 suffer from this weakness, and even EPRS17 only provides integrity against adversaries which cannot arbitrarily inject ciphertexts. In this work, we provide the first ciphertext-independent updatable encryption schemes with security beyond \CPA, in particular providing strong integrity protection. Our constructions and security proofs of updatable encryption schemes are surprisingly modular. We give a generic transformation that allows key-rotation and confidentiality/integrity of the scheme to be treated almost separately, i.e., security of the updatable scheme is derived from simple properties of its static building blocks. An interesting side effect of our generic approach is that it immediately implies the unlinkability of ciphertext updates that was introduced as an essential additional property of updatable encryption by EPRS17 and LT18

    Security in the Presence of Key Reuse: Context-Separable Interfaces and their Applications

    Get PDF
    Key separation is often difficult to enforce in practice. While key reuse can be catastrophic for security, we know of a number of cryptographic schemes for which it is provably safe. But existing formal models, such as the notions of joint security (Haber-Pinkas, CCS ’01) and agility (Acar et al., EUROCRYPT ’10), do not address the full range of key-reuse attacks—in particular, those that break the abstraction of the scheme, or exploit protocol interactions at a higher level of abstraction. This work attends to these vectors by focusing on two key elements: the game that codifies the scheme under attack, as well as its intended adversarial model; and the underlying interface that exposes secret key operations for use by the game. Our main security experiment considers the implications of using an interface (in practice, the API of a software library or a hardware platform such as TPM) to realize the scheme specified by the game when the interface is shared with other unspecified, insecure, or even malicious applications. After building up a definitional framework, we apply it to the analysis of two real-world schemes: the EdDSA signature algorithm and the Noise protocol framework. Both provide some degree of context separability, a design pattern for interfaces and their applications that aids in the deployment of secure protocols

    Boosting OMD for Almost Free Authentication of Associated Data

    Get PDF
    We propose pure OMD (p-OMD) as a new variant of the Offset Merkle-Damgård (OMD) authenticated encryption scheme. Our new scheme inherits all desirable security features of OMD while having a more compact structure and providing higher efficiency. The original OMD scheme, as submitted to the CAESAR competition, couples a single pass of a variant of the Merkle-Damgård (MD) iteration with the counter-based XOR MAC algorithm to provide privacy and authenticity. Our improved p-OMD scheme dispenses with the XOR MAC algorithm and is purely based on the MD iteration; hence, the name ``pure'' OMD. To process a message of ℓ\ell blocks and associated data of aa blocks, OMD needs ℓ+a+2\ell+a+2 calls to the compression function while p-OMD only requires max{ℓ,a\ell, a}+22 calls. Therefore, for a typical case where ℓ≥a\ell \geq a, p-OMD makes just ℓ+2\ell+2 calls to the compression function; that is, associated data is processed almost freely compared to OMD. We prove the security of p-OMD under the same standard assumption (pseudo-randomness of the compression function) as made in OMD; moreover, the security bound for p-OMD is the same as that of OMD, showing that the modifications made to boost the performance are without any loss of security

    Reconsidering Generic Composition: the Tag-then-Encrypt case

    Get PDF
    Authenticated Encryption (AE\mathsf{AE}) achieves confidentiality and authenticity, the two most fundamental goals of cryptography, in a single scheme. A common strategy to obtain AE\mathsf{AE} is to combine a Message Authentication Code (MAC)(\mathsf{MAC}) and an encryption scheme, either nonce-based or iv\mathsf{iv}-based. Out of the 180 possible combinations, Namprempre et al.~[25] proved that 12 were secure, 164 insecure and 4 were left unresolved: A10, A11 and A12 which use an \iv-based encryption scheme and N4 which uses a nonce-based one. The question of the security of these composition modes is particularly intriguing as N4, A11, and A12 are more efficient than the 12 composition modes that are known to be provably secure.\\ We prove that: (i)(i) N4 is not secure in general, (ii)(ii) A10, A11 and A12 have equivalent security, (iii)(iii) A10, A11, A12 and N4 are secure if the underlying encryption scheme is either misuse-resistant or ``message malleable\u27\u27, a property that is satisfied by many classical encryption modes, (iv)(iv) A10, A11 and A12 are insecure if the underlying encryption scheme is stateful or untidy.\\ All the results are quantitative

    Optimal Channel Security Against Fine-Grained State Compromise: The Safety of Messaging

    Get PDF
    We aim to understand the best possible security of a (bidirectional) cryptographic channel against an adversary that may arbitrarily and repeatedly learn the secret state of either communicating party. We give a formal security definition and a proven-secure construction. This construction provides better security against state compromise than the Signal Double Ratchet Algorithm or any other known channel construction. To facilitate this we define and construct new forms of public-key encryption and digital signatures that update their keys over time

    Forkcipher: A New Primitive for Authenticated Encryption of Very Short Messages

    Get PDF
    This is an extended version of the article with the same title accepted at Asiacrypt 2019.International audienceHighly efficient encryption and authentication of short messages is an essential requirement for enabling security in constrained scenarios such as the CAN FD in automotive systems (max. message size 64 bytes), massive IoT, critical communication domains of 5G, and Narrowband IoT, to mention a few. In addition, one of the NIST lightweight cryptography project requirements is that AEAD schemes shall be “optimized to be efficient for short messages (e.g., as short as 8 bytes)”. In this work we introduce and formalize a novel primitive in symmetric cryptography called a forkcipher. A forkcipher is a keyed function expanding a fixed-length input to a fixed-length output. We define its security as indistinguishability under chosen ciphertext attack. We give a generic construction validation via the new iterate-fork-iterate design paradigm. We then propose ForkSkinny as a concrete forkcipher instance with a public tweak and based on SKINNY: a tweakable lightweight block cipher constructed using the TWEAKEY framework. We conduct extensive cryptanalysis of ForkSkinny against classical and structure-specific attacks. We demonstrate the applicability of forkciphers by designing three new provably-secure, nonce-based AEAD modes which offer performance and security tradeoffs and are optimized for efficiency of very short messages. Considering a reference block size of 16 bytes, and ignoring possible hardware optimizations, our new AEAD schemes beat the best SKINNY-based AEAD modes. More generally, we show forkciphers are suited for lightweight applications dealing with predominantly short messages, while at the same time allowing handling arbitrary messages sizes. Furthermore, our hardware implementation results show that when we exploit the inherent parallelism of ForkSkinny we achieve the best performance when directly compared with the most efficient mode instantiated with the SKINNY block cipher
    corecore