
Key Rotation for Authenticated Encryption

Adam Everspaugh1, Kenneth Paterson2, Thomas Ristenpart3, Sam Scott4

1University of Wisconsin–Madison, 2Royal Holloway, University of London,
3Cornell Tech

Abstract. A common requirement in practice is to periodically rotate
the keys used to encrypt stored data. Systems used by Amazon and
Google do so using a hybrid encryption technique which is eminently
practical but has questionable security in the face of key compromises
and does not provide full key rotation. Meanwhile, symmetric updatable
encryption schemes (introduced by Boneh et al. CRYPTO 2013) support
full key rotation without performing decryption: ciphertexts created un-
der one key can be rotated to ciphertexts created under a different key
with the help of a re-encryption token. By design, the tokens do not
leak information about keys or plaintexts and so can be given to storage
providers without compromising security. But the prior work of Boneh et
al. addresses relatively weak confidentiality goals and does not consider
integrity at all. Moreover, as we show, a subtle issue with their concrete
scheme obviates a security proof even for confidentiality against passive
attacks.

This paper presents a systematic study of updatable Authenticated En-
cryption (AE). We provide a set of security notions that strengthen those
in prior work. These notions enable us to tease out real-world security
requirements of different strengths and build schemes that satisfy them
efficiently. We show that the hybrid approach currently used in industry
achieves relatively weak forms of confidentiality and integrity, but can be
modified at low cost to meet our stronger confidentiality and integrity
goals. This leads to a practical scheme that has negligible overhead be-
yond conventional AE. We then introduce re-encryption indistinguisha-
bility, a security notion that formally captures the idea of fully refresh-
ing keys upon rotation. We show how to repair the scheme of Boneh
et al., attaining our stronger confidentiality notion. We also show how
to extend the scheme to provide integrity, and we prove that it meets
our re-encryption indistinguishability notion. Finally, we discuss how to
instantiate our scheme efficiently using off-the-shelf cryptographic com-
ponents (AE, hashing, elliptic curves). We report on the performance of
a prototype implementation, showing that fully secure key rotations can
be performed at a throughput of approximately 116 kB/s.

1 Introduction

To cryptographically protect data while stored, systems use authenticated en-
cryption (AE) schemes that provide strong message confidentiality as well as

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/131177315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

ciphertext integrity. The latter allows detection of active attackers who ma-
nipulate ciphertexts. When data is stored for long periods of time, good key
management practice dictates that systems must support key rotation: moving
encrypted data from an old key to a fresh one. Indeed, key rotation is mandated
by regulation in some contexts, such as the payment card industry data security
standard (PCI DSS) that dictates how credit card data must be secured [PCI16].
Key rotation can also be used to revoke old keys that are comprised, or to effect
data access revocation.

Deployed approaches to key rotation. Systems used in practice typically support
a type of key rotation using a symmetric key hierarchy. Amazon’s Key Manage-
ment Service [AWS], for example, enables users to encrypt a plaintext M under
a fresh data encapsulation key via Cdem = Enc(Kd,M) and then wrap Kd via
Ckem = Enc(K,Kd) under a long-term key K owned by the client. Here Enc is
an authenticated encryption (AE) scheme. By analogy with the use of hybrid en-
cryption in the asymmetric setting, we refer to such a scheme as a KEM/DEM
construction, with KEM and DEM standing for key and data encapsulation
mechanisms, respectively; we refer to the specific scheme as AE-hybrid.

The AE-hybrid scheme then allows a simple form of key rotation: the client
picks a fresh K ′ and re-encrypts Kd as C ′kem = Enc(K ′,Dec(K,Ckem)). Note
that the DEM key Kd does not change during key rotation. When deployed
in a remote storage system, a client can perform key rotation just by fetching
from the server the small, constant-sized ciphertext Ckem, operating locally on
it to produce C ′kem, and then sending C ′kem back to the server. Performance is
independent of the actual message length. The Google Cloud Platform [Goo]
uses a similar approach to enable key rotation.

To our knowledge, the level of security provided by this widely deployed AE-
hybrid scheme has never been investigated, let alone formally defined in a secu-
rity model motivated by real-world security considerations. It is even arguable
whether AE-hybrid truly rotates keys, since the DEM key does not change. Cer-
tainly it is unclear what security is provided if key compromises occur, one of
the main motivations for using such an approach in the first place. On the other
hand, the scheme is fast and requires only limited data transfer between the
client and the data store, and appears to be sufficient to meet current regulatory
requirements.

Updatable encryption. Boneh, Lewi, Montgomery, and Raghunathan
(BLMR) [BLMR15] (the full version of [BLMR13]) introduced another
approach to enabling key rotation that they call updatable encryption. An
updatable encryption scheme is a symmetric encryption scheme that, in
addition to the usual triple of (KeyGen,Enc,Dec) algorithms, comes with a pair
of algorithms ReKeyGen and ReEnc. The first, ReKeyGen, generates a compact
rekey token given the old and new secret keys and a target ciphertext, while the
second, ReEnc, uses a rekey token output by the first to rotate the ciphertext
without performing decryption. For example, AE-hybrid can be seen as an
instance of an updatable encryption scheme in which the rekey token output by

3

ReKeyGen is C ′kem and where ReEnc simply replaces Ckem with C ′kem. BLMR
introduced an IND-CPA-style security notion in which adversaries can addi-
tionally obtain some rekey tokens. Their definition is inspired by, but different
from, those used for CCA-secure proxy re-encryption schemes [CH07]. Given its
obvious limitations when it comes to key rotation, it is perhaps surprising that
the AE-hybrid construction provably meets the BLMR confidentiality notion
for updatable encryption schemes.

BLMR also introduced and targeted a second security notion for updatable
encryption, called ciphertext independence. It demands that a ciphertext and
its rotation to another key are identically distributed to a ciphertext and a
rotation of another ciphertext (for the same message). The intuition is that
this captures the idea that true key rotation should refresh all randomness used
during encryption. This definition is not met by the AE-hybrid construction
above. But it is both unclear what attacks meeting their definition would prevent,
and, relatedly, whether more intuitive definitions exist.

BLMR gave a construction for an updatable encryption scheme and claimed
that it provably meets their two security definitions. Their construction clev-
erly combines an IND-CPA KEM with a DEM that uses a key-homomorphic
PRF [NPR99,BLMR15] to realize a stream cipher. This enables rotation of both
the KEM and the DEM keys, though the latter requires a number of operations
that is linear in the plaintext length. Looking ahead, their proof sketch has a
bug and we provide strong evidence that it is unlikely to be fixable. Moreover,
BLMR do not yet target or achieve any kind of authenticated encryption goal,
a must for practical use.

Our contributions. We provide a systematic treatment of AE schemes that sup-
port key rotation without decryption, a.k.a. updatable AE.

Specifically, we provide a new security notion for confidentiality, UP-IND,
that is strictly stronger than that of BLMR [BLMR15], a corresponding notion
for integrity, UP-INT (missing entirely from BLMR but essential for practice),
and a new notion called re-encryption indistinguishability (UP-REENC) that is
strictly stronger and more natural in capturing the spirit of “true key rotation”
than the ciphertext indistinguishability notion of BLMR.

Achieving our UP-REENC notion means that an attacker, having access to
both a ciphertext and the secret key used to generate it, should not be able to
derive any information that helps it attack a rotation of that ciphertext. Thus, for
example, an insider with access to the encryption keys at some point in time but
who is then excluded from the system cannot make use of the old keys to learn
anything useful once key rotation has been carried out on the AE ciphertexts.
Teasing out the correct form of this notion turns out to be a significant challenge
in our work.

Armed with this set of security notions, we go on to make better sense of the
landscape of constructions for updatable AE schemes. Table 1 summarises the
security properties of the different schemes that we consider. Referring to this
table, our security notions highlight the limitations of the AE-hybrid scheme:
while it meets the confidentiality notion of BLMR, it only satisfies our UP-IND

4

and UP-INT notions when considering a severely weakened adversary who has no
access to any compromised keys. We propose an improved construction, KSS,
that satisfies both notions for any number of compromised keys and which is
easily deployable via small adjustments to AE-hybrid. KSS uses a form of secret
sharing to embed key shares in the KEM and DEM components to avoid the
issue of leaking the DEM key in the updating process, and adds a cryptographic
hash binding the KEM and DEM components to prevent mauling attacks. These
changes could easily be adopted by practitioners with virtually no impact on
performance, while concretely improving security.

However, the improved scheme KSS cannot satisfy our UP-REENC notion,
because it still uses a KEM/DEM-style approach in which the DEM key is never
rotated. The BLMR scheme might provide UP-REENC security, but, as noted
above, its security proof contains a bug which we consider unlikely to be fix-
able. Indeed, we show that proving the BLMR scheme confidential would imply
that one could also prove circular security [BRS03,CL01] for a particular type
of hybrid encryption scheme assuming only the key encapsulation is IND-CPA
secure. Existing counter-examples of IND-CPA secure, but circular insecure,
schemes [ABBC10,CGH12] do not quite rule out such a result. But the link to
the very strong notion of circular security casts doubt on the security of this
scheme. One can easily modify the BLMR scheme to avoid this issue, but even
having done so the resulting encryption scheme is still trivially malleable and so
cannot meet our UP-INT integrity notion.

We therefore provide another new scheme, ReCrypt, meeting all three of our
security notions: UP-IND, UP-INT and UP-REENC. We take inspiration from
the previous constructions, especially that of BLMR: key-homomorphic PRFs
provide the ability to fully rotate encryption keys; the KEM/DEM approach with
secret sharing avoids the issue of leaking the DEM key in the updating process;
and finally, adding a cryptographic hash to the KEM tightly binds the KEM and
DEM portions and prevents ciphertext manipulation. We go on to instantiate
the scheme using the Random Oracle Model (ROM) key-homomorphic PRF
from [NPR99], having the form H(M)k, where H is a hash function into a group
in which DDH is hard. This yields a construction of an updatable AE scheme
meeting all three of our security notions in the ROM under the DDH assumption.
We report on the performance of an implementation of ReCrypt using elliptic
curve groups, concluding that it is performant enough for practical use with
short plaintexts. However, because of its reliance on exponentiation, ReCrypt is
still orders of magnitude slower than our KSS scheme (achieving only UP-IND
and UP-INT security). This, currently, is the price that must be paid for true
key rotation in updatable encryption.

Summary. In summary, the main contributions of this paper are:

– To provide the first definitions of security for AE supporting key rotation
without exposing plaintext.

– To explain the gap between existing, deployed schemes using the KEM/DEM
approach and “full” refreshing of ciphertexts.

5

Scheme Section UP-IND UP-INT UP-REENC

AE-hybrid† 4.1 7 7 7
KSS∗ 4.3 3 3 7
BLMR 6 7 7 7
ReCrypt∗ 7 3 3 3

Table 1. Summary of schemes studied. † In-use by practitioners today. * Introduced
in this work.

– To provide the first proofs of security for AE schemes using the KEM/DEM
approach, namely AE-hybrid and KSS.

– To detail the first updatable AE scheme, ReCrypt, that fully and securely
refreshes ciphertexts by way of key rotations without ever exposing plaintext
data. We implement a prototype and report on microbenchmarks, showing
that rotations can be performed in less than 9 µs per byte.

2 Updatable AE

We turn to formalizing the syntax and semantics of AE schemes supporting
key rotation. Our approach extends that of Boneh et al. [BLMR15] (BLMR),
the main syntactical difference being that we allow rekey token generation, re-
encryption, and decryption to all return a distinguished error symbol ⊥. This
is required to enable us to later cater for integrity notions. We also modify the
syntax so that ciphertexts include two portions, a header and a body. In our
formulation, only the former is used during generation of rekey tokens (while in
BLMR the full ciphertext is formally required).

Definition 1 (Updatable AE). An updatable AE scheme is a tuple of algo-
rithms Π = (KeyGen, Enc, ReKeyGen, ReEnc, Dec) with the following properties:

– KeyGen()→ k. Outputs a secret key k.
– Enc(k,m)→ C. On input a secret key k and message m, outputs a ciphertext
C = (C̃, C) consisting of a ciphertext header C̃ and ciphertext body C.

– ReKeyGen(k1, k2, C̃) → ∆1,2,C̃ . On input two secret keys, k1 and k2, and a

ciphertext header C̃, outputs a rekey token or ⊥.
– ReEnc(∆1,2,C̃ , (C̃, C))→ C2. On input a rekey token and ciphertext, outputs

a new ciphertext or ⊥. We require that ReEnc is deterministic.
– Dec(k,C) → m. On input a secret key k and ciphertext C outputs either a

message or ⊥.

Of course we require that all algorithms are efficiently computable. Note
that, in common with [BLMR15], our definition is not in the nonce-based setting
that is widely used for AE. Rather, we will assume that Enc is randomised. We
consider this sufficient for a first treatment of updatable AE; it also reflects

6

Fig. 1. Interaction between client and cloud during a ciphertext-dependent update.
Client retrieves a small ciphertext header, and runs ReKeyGen to produce a compact
rekey token ∆. The cloud uses this token to re-encrypt the data. At the end of the
update, the data is encrypted using k2, and cannot be recovered using only k1.

common industry practice as per the schemes currently used by Amazon [AWS]
and Google [Goo]. We relegate the important problem of developing a parallel
formulation in the nonce-based setting to future work. Similarly, we assume that
all our AE schemes have single decryption errors, cf. [BDPS14], and we do not
consider issues such as release of unverified plaintext, cf. [ABL+14], tidiness,
cf. [NRS14] and length-hiding, cf. [PRS11].

Correctness. An updatable AE scheme is correct if decrypting a legitimately
generated ciphertext reproduces the original message. Of course, legitimate ci-
phertexts may be rotated through many keys, complicating the formalization of
this notion.

Definition 2 (Correctness). Fix an updatable AE scheme Π. For any mes-
sage m and any sequence of secret keys k1, . . . kT output by running KeyGen T
times, let C1 = (C̃1, C1) = Enc(k1,m) and recursively define for 1 ≤ t < T

Ct+1 = ReEnc(ReKeyGen(kt, kt+1, C̃t), Ct).

Then Π is correct if Dec(kT , CT) = m with probability 1.

Compactness. We say that an updatable AE scheme is compact if the size of
both ciphertext headers and rekeying tokens are independent of the length of
the plaintext. In practice the sizes should be as small as possible, and for the
constructions we consider these are typically a small constant multiple of the
key length.

Compactness is important for efficiency of key rotation. Considering the ab-
stract architecture in Figure 1, header values must be available to the key server
when rekey tokens are generated. Typically this will mean having to fetch them
from storage. Likewise, the rekey token must be sent back to the storage system.
Note that there are simple constructions that are not compact, such as the one
that sets C̃ to be a standard authenticated encryption of the message and in
which ReKeyGen decrypts C̃, re-encrypts it, and outputs a “rekeying token” as
the new ciphertext.

7

Ciphertext-dependence. As formulated above, updatable AE schemes require
part of the ciphertext, the ciphertext header C̃, in order to generate a rekey
token. We will also consider schemes for which C̃ is the empty string, denoted
ε. We will restrict attention to schemes for which encryption either always out-
puts C̃ = ε or never does. In the former case we call the scheme ciphertext-
independent and, in the latter case, ciphertext-dependent. When discussing
ciphertext-independent schemes, we will drop C̃ from notation, e.g., writing ∆i,j

instead of ∆i,j,C̃ .

However, we primarily focus on ciphertext-dependent schemes which ap-
pear to offer more flexibility and achieve stronger security guarantees (though
it is an open question whether a ciphertext-independent scheme can achieve
our strongest security notion). We do propose a very lightweight ciphertext-
independent scheme included in Appendix A.1, but we show it achieves strictly
weaker confidentiality and integrity notions. One can generically convert a
ciphertext-independent scheme into a ciphertext-dependent one, simply by de-
riving a ciphertext-specific key using some unique identifier for the ciphertext.
We omit the formal treatment of this trivial approach.

Directionality of rotations. Some updatable AE schemes are bidirectional, mean-
ing rekey tokens can be used to go forwards or backwards.

We only consider bi-directionality to be a feature of ciphertext-independent
schemes. Formally, we say that a scheme is bidirectional if there exists an efficient
algorithm Invert(·) that produces a valid rekey token ∆j,i when given ∆i,j as
input.

Schemes that are not bidirectional might be able to ensure that an adversary
cannot use rekey tokens to “undo” a rotation of a ciphertext. We will see that
ciphertext-dependence can help in building such unidirectional schemes, whereas
ciphertext-independent schemes seem harder to make unidirectional. This latter
difficulty is related to the long-standing problem of constructing unidirectional
proxy re-encryption schemes in the public key setting.

Relationship to proxy re-encryption. Proxy re-encryption targets a different set-
ting than updatable encryption (or AE): the functional ability to allow a ci-
phertext encrypted under one key to be converted to a ciphertext decryptable
by another key. The conversion should not leak plaintext data, but, unlike key
rotation, it is not necessarily a goal of proxy re-encryption to remove all depen-
dency on the original key, formalised as indistinguishability of re-encryptions
(UP-REENC security) in our work. For example, previous work [CK05,ID03]
suggests twice encrypting plaintexts under different keys. To rotate, the previ-
ous outer key and a freshly generated outer key is sent to the proxy to perform
conversion, but the inner key is never modified. Such an approach does not
satisfy the goals of key rotation.

That said, any bidirectional, ciphertext-independent updatable AE ends up
also being usable as a symmetric proxy re-encryption scheme (at least as for-
malized by [BLMR15]).

8

3 Confidentiality and Integrity for Updatable Encryption

Updatable AE should provide confidentiality for messages as well as integrity
of ciphertexts, even in the face of adversaries that obtain rekey tokens and re-
encryptions, and that can corrupt some number of secret keys. Finding defi-
nitions that rule out trivial wins — e.g., rotating a challenge ciphertext to a
compromised key, or obtaining sequences of rekey tokens that allow such rota-
tions — is delicate. We provide a framework for doing so.

Our starting point will be a confidentiality notion which improves signifi-
cantly upon the previous notion of BLMR by including additional attack vectors,
and strengthening existing ones.

For ciphertext integrity, we develop a new definition, building on the usual
INT-CTXT notion for standard AE [BN00]. Looking ahead, we will target uni-
directional schemes that simultaneously achieve both UP-IND and UP-INT se-
curity.

We will follow a concrete security approach in which we do not strictly define
security, but rather measure advantage as a function of the resources (running
time and number of queries) made by an adversary. Informally, schemes are
secure if no adversary with reasonable resources can achieve advantage far from
zero.

3.1 Message Confidentiality

The confidentiality game UP-IND is shown in the leftmost column of Figure 2.
The adversary’s goal is to guess the bit b. Success implies that a scheme leaks
partial information about plaintexts. We paramaterise the game by two values t
and κ. The game initialises t+κ secret keys, κ of which are given to the adversary,
and t are kept secret for use in the oracles. We label the keys by k1, . . . , kt for the
uncompromised keys, and by kt+1, . . . kt+κ for the compromised keys. We require
at least one uncompromised key, but do not necessarily require any compromised
keys, i.e. t ≥ 1 and κ ≥ 0. We leave consideration of equivalences between models
with many keys and few keys and between models with active and static key
compromises as interesting problems for future work.

The game relies on two subroutines InvalidRK and InvalidRE to determine if a
re-keygen and re-encryption query, respectively, should be allowed. These pro-
cedures are efficiently computed by the game as a function of the adversarial
queries and responses. This reliance on the transcript we leave implicit in the
notation to avoid clutter. Different choices of invalidity procedures gives rise to
distinct definitions of security, and we explain two interesting ones in turn. Note
that an invalid query (as determined by InvalidRE) still results in the adversary
learning the ciphertext header, giving greater power to the adversary. We believe
this to be an important improvement both in practice and theoretically over pre-
vious models, which consider only a partial compromise. The full compromise of
a client results in the adversary playing the role of the client in the key update
procedure, during which the server will return the ciphertext header. In practice,

9

UP-IND

b←$ {0, 1}
k1, . . . , kt+κ ←$KeyGen()

b
′ ←$AO(kt+1, . . . , kt+κ)

return (b
′
= b)

Enc(i,m)

return Enc(ki,m)

ReKeyGen(i, j, C̃)

if InvalidRK(i, j, C̃) then return ⊥
∆i,j,C̃ ←$ReKeyGen(ki, kj , C̃)

return ∆i,j,C̃

ReEnc(i, j, (C̃, C))

∆i,j,C̃ ←$ReKeyGen(ki, kj , C̃)

C
′
= (C̃

′
, C

′
)← ReEnc(∆i,j,C̃ , (C̃, C))

if InvalidRE(i, j, C̃) then return C̃
′

else return C
′

LR(i,m0,m1)

if i > t then return ⊥
C ←$ Enc(ki,mb)

return C

UP-INT

win← false

k1, . . . , kt+κ ←$KeyGen()

AO(kt+1, . . . , kt+κ)

return win

Enc(i,m)

return Enc(ki,m)

ReKeyGen(i, j, C̃)

return ReKeyGen(ki, kj , C̃)

ReEnc(i, j, (C̃, C))

∆i,j,C̃ ←$ReKeyGen(ki, kj , C̃)

C
′ ← ReEnc(∆i,j,C̃ , (C̃, C))

return C
′

Try(i, C)

if InvalidCTXT(i, C) then return ⊥
M ← Dec(ki, C)

if M = ⊥ then return ⊥
win← true

return M

Fig. 2. Confidentiality and integrity games for updatable encryption security.

it is likely that an adversary who has initially breached the client would use this
access to query related services.

Invalidity procedures. For the invalidity constraints used in UP-IND, we target
a strong definition, while preventing the adversary from trivially receiving a
challenge ciphertext re-encrypted to a compromised key.

We use the ciphertext headers to determine whether a ciphertext has been
derived from a challenge ciphertext. It is natural to use only the headers since
these will be processed by the client when performing an update. We define a
procedure DerivedLR(i, C̃) that outputs true should C̃ have been derived from
the ciphertext header returned by an LR query.

Definition 3 (LR-derived headers). We recursively define function
DerivedLR(i, C̃) to output true iff any of the following conditions hold:

10

– C̃ was the ciphertext header output in response to a query LR(i,m0,m1)
– C̃ was the ciphertext header output in response to a query ReEnc(j, i, C ′)

and DerivedLR(j, C̃ ′) = true
– C̃ is the ciphertext header output by running ReEnc(∆j,i,C̃′ , C ′) where ∆j,i,C̃′

is the result of a query ReKeyGen(j, i, C̃ ′) for which DerivedLR(j, C̃ ′) = true.

The predicate DerivedLR(i, C̃) is efficient to compute and can be computed
locally by the adversary. The most efficient way to implement it is to grow a
look-up table T indexed by a key identifier and a ciphertext header and whose
entries are sets of ciphertexts. Any query to LR(i,m0,m1) updates the table by
adding the returned ciphertext to the set T[i, C̃] where C̃ is the oracle’s returned
ciphertext header value. For a query ReEnc(j, i, C ′), if T[j, C̃ ′] is not empty,
then it adds the returned ciphertext to the set T[i, C̃∗] for C̃∗ the returned
ciphertext header. For a query ReKeyGen(j, i, C̃ ′) with return value ∆j,i,C̃′ ,

apply ReEnc(∆j,i,C̃′ , C) for all ciphertexts C found in entry T[j, C̃ ′] and add
appropriate new entries to the table. In this way, one can maintain the table
in worst-case time that is quadratic in the number of queries, and compute in
constant time DerivedLR(i, C̃) by simply checking if T[i, C̃] is non-empty. If any
call to ReKeyGen or ReEnc in DerivedLR or the main oracle procedure returns ⊥,
then the entire procedure returns ⊥.

Note that DerivedLR relies on ReEnc being deterministic, a restriction we made
in Section 2. To complete the definition, we specify the invalidity procedures that
use DerivedLR as a subroutine:

– InvalidRK(i, j, C̃) outputs true if j > t and DerivedLR(i, C̃) = true. In words,
the target key is compromised and i, C̃ derives from an LR query.

– InvalidRE(i, j, C̃) outputs true if j > t and DerivedLR(i, C̃) = true. In words,
the target key is compromised and i, C̃ derives from an LR query.

We denote the game defined by using these invalidity procedures by UP-IND.
We associate to an UP-IND adversary A and scheme Π the advantage measure:

Advup-ind
Π,κ,t (A) = 2 · Pr

[
UP-INDAΠ,κ,t ⇒ true

]
− 1 .

This notion is very strong and bidirectional schemes cannot meet it.

Theorem 1. Let Π be a bidirectional updatable encryption scheme. Then there
exists an UP-IND adversary A that makes 2 queries and for which

Advup-indΠ,κ,t (A) = 1

for any κ ≥ 1 and t ≥ 1.

Proof. We explicitly define the adversary A. It makes a query to C1 =
LR(1,m0,m1) for arbitrary messages m0 6= m1 and computes locally Ct+1 =
Enc(kt+1,m1). It then makes a query ∆t+1,1,C̃t+1

= ReKeyGen(t+ 1, 1, C̃t+1). It

runs C ′ = ReEnc(Invert(∆t+1,1,C̃t+1
, Ct+1, C1), C1) locally and then decrypts C ′

using kt+1. It checks whether the result is m0 or m1 and returns the appropriate
bit.

11

BLMR confidentiality. In comparison, we define invalidity procedures corre-
sponding to those in BLMR’s security notion.

– InvalidBLMRRK(i, j, C̃) outputs true if i ≤ t < j or j ≤ t < i and outputs
false otherwise. In words, the query is not allowed if exactly one of the two
keys is compromised.

– InvalidBLMRRE(i, j, C̃) outputs true if j > t and false otherwise. In words,
the query is not allowed if the target key kj is compromised.

We denote the game defined by using these invalidity procedures by UP-IND-BI
(the naming will become clear presently). We associate to an UP-IND-BI adver-
sary A, scheme Π, and parameters κ, t the advantage measure:

Advup-ind-bi
Π,κ,t (A) = 2 · Pr

[
UP-IND-BIAΠ,κ,t ⇒ true

]
− 1 .

A few observations are in order. First, it is apparent that the invalidity pro-
cedures for the BLMR notion are significantly stronger than ours, leading to
a weaker security notion: the BLMR procedures are not ciphertext-specific but
instead depend only on the compromise status of keys. We will show that this
difference is significant. In addition, the corresponding BLMR definition did not
consider leakage of the ciphertext header when InvalidBLMRRE returns true. Sec-
ond, for ciphertext-independent schemes in which C̃ = ε always, the BLMR defi-
nition coincides with symmetric proxy re-encryption security (as also introduced
in their paper [BLMR15]). Third, the BLMR confidentiality notion does not re-
quire unidirectional security of rekey tokens because it has the strong restriction
of disallowing attackers from obtaining rekey tokens ∆i,j,C̃ with i > t (so the
corresponding key is compromised), but with j < t (for an uncompromised key).
Thus, in principle, bidirectional schemes could meet this notion, explaining our
naming convention for the notion. Finally, the BLMR notion does not require
ciphertext-specific rekey tokens because the invalidity conditions are based only
on keys and not on the target ciphertext.

Detailed in Appendix A.1 is a bidirectional scheme that is secure in the
sense of UP-IND-BI. This result and the negative result that no bidirectional
scheme can achieve UP-IND given above (Theorem 1) yields as a corollary that
UP-IND-BI security is strictly weaker than UP-IND security. This illustrates the
enhanced strength of our UP-IND security notion compared to the corresponding
BLMR notion, UP-IND-BI.

Given that bidirectional, ciphertext-independent schemes have certain ad-
vantages in terms of performance and deployment simplicity, practitioners may
prefer them in some cases. For that flexibility, one trades off control over the
specificity of rekey tokens, which could be dangerous to confidentiality in some
compromise scenarios.

3.2 Ciphertext Integrity

We now turn to a notion of integrity captured by the game UP-INT shown
in Figure 2. The adversary’s goal is to submit a ciphertext to the Try oracle
that decrypts properly. Of course, we must exclude the adversary from simply

12

resubmitting valid ciphertexts produced by the encryption oracle, or derived
from such an encryption by way of re-encryption queries or rekey tokens.

In a bit more detail, in the Try oracle, we define a predicate InvalidCTXT
which captures whether the adversary has produced a trivial derivation of a
ciphertext obtained from the encryption oracle. This fulfills a similar role to
that of the InvalidRE and InvalidRK subroutines in the UP-IND game.

For the unidirectional security game UP-INT, we define InvalidCTXT(i, C =
(C̃, C)) inductively, outputting true if any of the following conditions hold:

– i > t, i.e. ki is known to the adversary
– (C̃, C) was output in response to a query Enc(i,m)
– (C̃, C) was output in response to a query ReEnc(j, i, C ′) and

InvalidCTXT(j, C ′) = true
– (C̃, C) is the ciphertext output by running ReEnc(∆j,i,C̃′ , C ′) for C ′ =

(C̃ ′, C
′
) where ∆j,i,C̃′ was the result of a query ReKeyGen(j, i, C̃ ′) and

InvalidCTXT(j, C ′)) = true.

This predicate requires the transcript of queries thus far; to avoid clutter we leave
the required transcript implicit in our notation. The definition of InvalidCTXT
is quite permissive: it defines invalid ciphertexts as narrowly as possible, making
our security notion stronger. Notably, the adversary can produce any ciphertext
(valid or otherwise) using a corrupted key ki, and use the ReKeyGen oracle to
learn a token to update this ciphertext to a non-compromised key. Only the
direct re-encryption of the submitted ciphertext is forbidden.

We associate to an updatable encryption scheme Π, an UP-INT adversary
A, and parameters κ, t the advantage measure:

Advup-int
Π,κ,t (A) = Pr

[
UP-INTAΠ,κ,t ⇒ true

]
.

4 Practical Updatable AE Schemes

We first investigate the security of updatable AE schemes built using the
KEM/DEM approach sketched in the introduction. Such schemes are in
widespread use at present, for example in AWS’s and Google’s cloud storage sys-
tems, yet have received no formal analysis to date. We produce the AE-hybrid
construction as a formalism of this common practice.

Using the confidentiality and integrity definitions from the previous section,
we discover that this construction offers very weak security against an adversary
capable of compromising keys. Indeed, we are only able to prove security when
the number of compromised keys κ is equal to 0. Given the intention of key
rotation this is a somewhat troubling result.

On a positive note, we show a couple of simple tweaks to the AE-hybrid which
fix these issues. The resultant scheme, named KSS, offers improved security at
little additional cost.

We leave to the appendix our bidirectional, ciphertext-independent scheme
XOR-KEM which does not offer strong integrity guarantees but may be of in-
terest for other applications.

13

4.1 Authenticated Encryption

In the following constructions we make use of authenticated encryption (AE)
schemes which we define here.

Definition 4 (Authenticated encryption). An authenticated encryption
scheme π is a tuple of algorithms (K, E ,D). K is a randomised algorithm out-
putting keys. We denote by Ek(·) the randomised algorithm for encryption by key
k, and by Dk(·) decryption. Decryption is a deterministic algorithm and outputs
the distinguished symbol ⊥ to denote a failed decryption.

In keeping with our definitional choices for updatable AE, we consider ran-
domised AE schemes rather than nonce-based ones.

We use the all-in-one authenticated encryption security definition from
[RS06].

Definition 5 (Authenticated Encryption Security). Let π = (K, E ,D) be
an authenticated encryption scheme. Let Enc, Dec be oracles whose behaviors
depends on hidden values b ∈ {0, 1} and key k←$K. Enc takes as input a bit
string m and produces Ek(m) when b = 0, and produces a random string of the
same length otherwise. Dec takes as input a bit string C and produces Dk(C)
when b = 0, and produces ⊥ otherwise.

Let AE-RORAπ be the game in which an adversary A interacts with the Enc
and Dec oracles and must output a bit b′. The game outputs true when b = b′.
We require that the adversary not submit outputs from the Enc oracle to the Dec
oracle.

We define the advantage of A in the AE-ROR security game for π as:

Advae
π (A) = 2 · Pr

[
AE-RORAπ ⇒ true

]
− 1.

Unless otherwise stated, our AE schemes will be length-regular, so that the
lengths of ciphertexts depend only on the lengths of plaintexts. This ensures that
the above definition also implies a standard “left-or-right” security definition.

4.2 (In-)Security of AE-hybrid Construction

Figure 3 defines an updatable AE scheme, AE-hybrid, for any AE scheme
π = (K, E ,D). This is a natural key-wrapping scheme that one might create
in the absence of security definitions. It is preferred by practitioners because
key rotation is straightforward and performant. Using this scheme means re-
keying requires constant time and communication, independent of the length of
the plaintext. In fact, we note that this scheme sees widening deployment for
encrypted cloud storage services. Both Amazon Web Services [AWS] and Google
Cloud Platform [Goo] use AE-hybrid to perform key rotations over encrypted
customer data.

We demonstrate severe limits of AE-hybrid: when keys are compromised
confidentiality and integrity cannot be recovered through re-encryption. Later
we will demonstrate straightforward modifications to AE-hybrid that allow it to
recover both confidentiality and integrity without impacting performance.

14

Enc(k,m)

x←$K

C̃ ←$ E(k, x)

C ←$ E(x,m)

return (C̃, C)

ReKeyGen(k1, k2, C̃)

x = D(k1, C̃)

if x = ⊥ return ⊥
∆1,2,C̃ ←$ E(k2, x)

return ∆1,2,C̃

Dec(k, (C̃, C))

x = D(k, C̃)

if x = ⊥ return ⊥

m = D(x,C)

return m

KeyGen : return K
ReEnc(∆1,2,C̃ , (C̃, C)) : return (∆1,2,C̃ , C)

Fig. 3. Algorithms for the AE-hybrid updatable AE scheme.

Theorem 2 (AE-hybrid insecurity in the UP-IND sense). Let π =
(K, E ,D) be a symmetric encryption scheme and Π be the updatable AE scheme
AE-hybrid built using π as defined in Figure 3.

Then there exists an adversary A making 2 queries such that Advup-indΠ,κ,t (A) =
1 for all κ ≥ 1 and t ≥ 1.

Proof. We construct a concrete adversary A satisfying the theorem statement.
A makes an initial query to LR(1,m0,m1) for distinct messages m0 6= m1

and receives challenge ciphertext C∗ = (E(k1, x), E(x,mb)). A subsequently calls
ReKeyGen(1, t+ 1, C∗). kt+1 is corrupted and thus InvalidRK returns true, so the
adversary receives the re-encrypted ciphertext header C̃ ′ = E(kt+1, x).

The adversary decrypts x = D(kt1 , C̃
′), computes mb = D(x,C

∗
) and checks

whether mb = m0 or m1.

The best one can achieve with this scheme is to prove security when κ = 0,
that is, security is not degraded beyond the underlying AE scheme when the
adversary does not obtain any compromised keys. However, such a weak security
notion is not particularly interesting, since the intention of key rotation is to
provide enhanced security in the face of key compromises. We give proofs for the
weak security of the AE-hybrid scheme in the full version.

Similarly, AE-hybrid is trivially insecure in the UP-INT sense when κ ≥ 1.

Theorem 3 (AE-hybrid insecurity in the UP-INT sense). Let π =
(K, E ,D) be a symmetric encryption scheme and Π be the updatable AE scheme
AE-hybrid built using π as defined in Figure 3.

Then there exists an adversary A making 2 queries and one Try query such
that Advup-intΠ,κ,t (A) = 1 for all κ ≥ 1 and t ≥ 1.

Proof. We construct a concrete adversary A satisfying the theorem statement.
A first queries Enc(1,m) to obtain an encryption C = (E(k1, x), E(x,m)),

and subsequently queries ReEnc(1, t + 1, C), receiving the re-encryption C ′ =
(E(kt+1, x), E(x,m)). Since A has key kt+1, A recovers x = D(kt+1, C̃

′) by per-
forming the decryption locally.

15

Enc(k,m)

x, y ←$K
χ = x⊕ y

C
1 ←$ E(x,m)

τ = E(x, h(m))

C̃ ←$ E(k, χ ‖ τ)

return (C̃, (y, C
1
))

ReKeyGen(k1, k2, C̃)

(χ ‖τ) = D(k1, C̃)

if (χ ‖ τ) = ⊥ return ⊥

y
′ ←$K

return (y
′
, E(k2, (χ⊕ y′) ‖ τ))

Dec(k, (C̃, C))

(χ ‖ τ) = D(k, C̃)

if (χ ‖ τ) = ⊥ return ⊥

x = χ⊕ C0

m = D(x,C
1
)

if D(x, τ) 6= h(m) then

return ⊥
return m

KeyGen() : return k ← K
ReEnc(∆1,2,C̃ , (C̃, C)) : return (∆1

1,2,C̃
, (C

0 ⊕∆0
1,2,C̃

, C
1
))

Fig. 4. Algorithms for the KSS updatable AE scheme.

Finally, A constructs the ciphertext C∗ = (C̃, E(x,m′)) for some m′ 6= m and
queries Try(1, C∗). Since C∗ is not derived from C and k1 is not compromised,
UP-INT outputs true.

4.3 Improving AE-hybrid

We make small modifications to the AE-hybrid construction and show that the
resulting construction has both UP-IND and UP-INT security. These modifi-
cations include masking the DEM key stored inside the ciphertext header (to
gain UP-IND security), and including an encrypted hash of the message (for
UP-INT). We note that these modifications are straightforward to implement
on top of the AE-hybrid scheme and have only minimal impact on the scheme’s
performance in practice.

Let (K,E ,D) be an AE scheme and h a hash function with `h output bits.
Then we define KSS (KEM/DEM with Secret Sharing) as in Figure 4.

Theorem 4 (UP-IND Security of KSS). Let π = (K, E ,D) be a symmetric
encryption scheme and Π be the updatable AE scheme KSS built using π as
defined in Figure 4. Then for any adversary A for the game UP-IND, making at
most q queries to the LR oracle, there exists an adversary B for the AE security
game where:

Advup-indΠ,κ,t (A) ≤ 2(t+ q) ·Advaeπ (B)

for all κ ≥ 0, t ≥ 1.

For brevity, we leave the full proof to the full version, but we briefly outline
the proof here. The proof proceeds in two phases. In the first phase, we use
a series of t game-hops to replace ciphertext headers produced by Enc under
each of t keys with random strings of the same length. We bound the difference

16

between each game with an AE adversary. In the second phase, we use q game-
hops (one for each LR query): each hop replacing encryption of the DEM with
a call to an AE encryption oracle. Again, we bound the difference between each
game with an AE adversary and in the end we get the stated result.

Our modification to include an encrypted hash of the ciphertext is in order
to provide a measure of integrity protection. As we will see in the following
theorem, collision resistance of the hash function is sufficient to provide UP-INT
security, since the hash itself is integrity-protected by the AE encryption of the
KEM. The hash itself is encrypted in order to avoid compromise of the ciphertext
header being sufficient to distinguish messages.

We achieve collision resistance by assuming h to be a random oracle. How-
ever, this assumption could be avoided by either re-using the DEM key x to
additionally key the hash function.

We note that this combination of hash function and AE encryption is used
to provide an additional integrity mechanism that works for any AE scheme.
However, some schemes may be able to avoid this additional computation by
re-using components of the AE encryption. For example, if an encrypt-then-
MAC scheme is used such that the encryption and MAC keys are both uniquely
derived from the DEM key x, then we conjecture that the MAC itself can be
used in place of the encrypted hash.

Theorem 5 (UP-INT Security of KSS). Let π = (K, E ,D) be a symmetric
encryption scheme, h be a cryptographic hash function modelled as a random
oracle with output length `h, and Π be the updatable AE scheme KSS built using
π and h as defined in Figure 4. Then for any polynomial-time adversary A,
making at most qh queries to the random oracle h, there exists an adversary B
for the AE security game where:

Advup-intΠ,κ,t (A) ≤ t ·Advaeπ (B) +
q2h
2`h

for all κ ≥ 0, t ≥ 1.

This proof follows a similar format to the previous one: after t game hops
to establish the integrity of the ciphertext headers using t AE adversaries, the
adversary’s success depends on finding two ciphertexts which produce a collision
in h. We leave the full proof to the full version.

5 Indistinguishability of Re-encryptions

The KSS scheme in the previous section achieves message confidentiality and
ciphertext integrity, even though the actual DEM key is not modified in the
course of performing a rotation. Modifying the scheme to ensure the DEM key is
also rotated is non-trivial, requiring either significant communication complexity
(linear in the length of the encrypted message) between the key server and stor-
age, or the introduction of more advanced primitives such as key- homomorphic

17

PRFs. The question that arises is whether or not changing DEM keys leaves
KSS vulnerable to attacks not captured by the definitions introduced thus far.

BLMR’s brief treatment of updatable encryption attempts to speak to this
issue by requiring that all randomness be refreshed during a rotation. Intuitively
this would seem to improve security, but the goal they formalize for this, detailed
below, is effectively a correctness condition (i.e., it does not seem to account for
adversarial behaviors). It doesn’t help clarify what attacks would be ruled out
by changing DEM keys.

Exfiltration attacks. We identify an issue with our KSS scheme (and the other
schemes in the preceding section) in the form of an attack that is not captured
by the confidentiality definitions introduced so far. Consider our simple KSS
scheme in the context of our motivating key server and storage service application
(described in Section 2). Suppose an attacker compromises for some limited time
both the key server and the storage service. Then for each ciphertext (C̃, C)
encrypted under a key k1, the attacker can compute the DEM key y ⊕ χ = x
and exfiltrate it.

Suppose the compromise is cleaned up, and the service immediately generates
new keys and rotates all ciphertexts to new secret keys. For the KSS scheme, the
resulting ciphertexts will still be later decryptable using the previously exfiltrated
DEM keys.

Although a confidentiality issue — the attacker later obtains access to plain-
text data they should not have — our UP-IND security notion (and, by impli-
cation, the weaker BLMR confidentiality notion) do not capture these attacks.
Technically this is because the security game does not allow a challenge cipher-
text to be encrypted to a compromised key (or rotated to one). Intuitively, the
UP-IND notion gives up on protecting the plaintexts underlying such cipher-
texts, as the attacker in the above scenario already had access to the plaintext
in the first phase of the attack.

One might therefore argue that this attack is not very important. All of
the plaintext data eventually at risk of later decryption was already exposed to
the adversary in the first time period because she had access to both the key
and ciphertexts. But quantitatively there is a difference: for a given ciphertext
an adversary in the first time period can exfiltrate just |x| bits per ciphertext
to later recover as much plaintext as she likes, whereas the trivial attack may
require exfiltrating the entire plaintext.

The chosen-message attack game of UP-IND does not capture different time
periods in which the adversary knows plaintexts in the first time period but
“forgets them” in the next. One could explicitly model this, perhaps via a two-
stage game with distinct adversaries in each stage, but such games are complex
and often difficult to reason about (cf., [RSS11]). We instead develop what we
believe is a more intuitive route that asks that the re-encryption of a cipher-
text should leak nothing about the ciphertext that was re-encrypted. We use
an indistinguishability-style definition to model this. The interpretation of our
definition is that any information derivable from a ciphertext (and its secret key)
before a re-encryption isn’t helpful in attacking the re-encrypted version.

18

UP-REENC

b←$ {0, 1}
k1, . . . , kt+κ ←$KeyGen()

b
′ ←$AO(kt+1, . . . , kt+κ)

return (b
′
= b)

Enc(i,m)

return Enc(ki,m)

ReKeyGen(i, j, C̃)

if InvalidRK(i, j, C̃) then return ⊥

∆i,j,C̃ ←$ReKeyGen(ki, kj , C̃)

return ∆i,j,C̃

ReEnc(i, j, (C̃, C))

∆i,j,C̃ ←$ReKeyGen(ki, kj , C̃)

C
′
= (C̃

′
, C

′
)← ReEnc(∆i,j,C̃ , (C̃, C))

if InvalidRE(i, j, C̃) then return C̃
′

else return C
′

ReLR(i, j, C0, C1)

if j > t or |C0| 6= |C1| then return ⊥
for β ∈ {0, 1} do

∆i,j,C̃β
←$ReKeyGen(ki, kj , C̃β)

C
′
β ← ReEnc(∆i,j,C̃β

, Cβ)

if C
′
β = ⊥ then return ⊥

return C
′
b

Fig. 5. The game used to define re-encryption indistinguishability.

Re-encryption indistinguishability. We formalize this idea via the game shown
in Figure 5. The adversary is provided with a left-or-right re-encryption oracle,
ReLR, instead of the usual left-or-right encryption oracle, in addition to the
usual collection of compromised keys, a re-encryption oracle, encryption oracle,
and rekey token generation oracle. We assume that the adversary always submits
ciphertext pairs such that |C0| = |C1|.

To avoid trivial wins, the game must disallow the adversary from simply
re-encrypting the challenge to a corrupted key. Hence we define a DerivedReLR
predicate, which is identical to the DerivedLR predicated defined in Section 3 for
UP-IND security, except that it uses the ReLR challenge oracle. We give it in
full detail in the next definition.

Definition 6 (ReLR-derived headers). We recursively define the function
DerivedReLR(i, C̃) to output true iff C̃ 6= ε and any of the following conditions
hold:

– C̃ was the ciphertext header output in response to a query ReLR(i, C0, C1).
– C̃ was the ciphertext header output in response to a query ReEnc(j, i, C ′)

and DerivedReLR(j, C̃ ′) = true.
– C̃ is the ciphertext header output by running ReEnc(∆j,i,C̃′ , C ′) where ∆j,i,C̃′

is the result of a query ReKeyGen(j, i, C ′) for which DerivedReLR(j, C̃ ′) =
true.

Then the subroutines InvalidRK, InvalidRE used in the game output true if
DerivedReLR(i, C̃) outputs true and j > t. We associate to an updatable encryp-
tion scheme Π, UP-REENC adversary A, and parameters κ, t the advantage

19

measure:

Advup-reenc
Π,κ,t (A) = 2 · Pr

[
UP-REENCAΠ,κ,t ⇒ true

]
− 1 .

Informally, an updatable encryption scheme is UP-REENC secure if no adversary
can achieve advantage far from zero given reasonable resources (run time, queries,
and number of target keys).

Notice that exfiltration attacks as discussed informally above would not apply
to a scheme that meets UP-REENC security. Suppose otherwise, that the exfil-
tration still worked. Then one could build an UP-REENC adversary that worked
as follows. It obtains two encryptions of different messages under a compromised
key, calculates the DEM key (or whatever other information is useful for later
decryption) and then submits the ciphertexts to the ReLR oracle, choosing as
target a non-compromised key (j ≤ t). Upon retrieving the ciphertext, it uses
the DEM key to decrypt, and checks which message was encrypted. Of course
our notion covers many other kinds of attacks, ruling out even re-encryption
that allows a single bit of information to leak.

BLMR re-encryption security. BLMR introduced a security goal that we will call
basic re-encryption indistinguishability.1 In words, it asks that the distribution
of a ciphertext and its re-encryption should be identical to the distribution of
a ciphertext and a re-encryption of a distinct ciphertext of the same message.
More formally we have the following experiment, parameterized by a bit b and
message m.

UP-REENC0b,m

k0, k1 ←$KeyGen()

for i ∈ [0, 1] do

Ci ←$ Enc(ki,m)

∆0,1,C̃i
←$ ReKeyGen(k0, k1, C̃i)

C
′
i←$ ReEnc(∆1,0,C̃i

, Ci)

return (C1, C
′
b)

Then BLMR require that for all m and all ciphertext pairs (C,C ′)

|Pr[UP-REENC00,m ⇒ (C,C ′)]− Pr[UP-REENC01,m ⇒ (C,C ′)]| = 0

where the probabilities are over the coins used in the experiments.
This goal misses a number of subtleties which are captured by our defini-

tion. Our definition permits the adversary, for example, to submit any pair of
ciphertexts to the ReLR oracle. This includes ciphertexts which are encryptions
of distinct messages, and even maliciously formed ciphertexts which may not
even decrypt correctly. It is simple to exhibit a scheme that meets the BLMR
notion but trivially is insecure under ours.2

1 BLMR called this ciphertext independence, but we reserve that terminology for
schemes that do not require ciphertexts during token generation as per Section 2.

2 Such a scheme can be constructed by adding a redundant ciphertext bit to an existing
UP-IND-secure scheme, with the redundant bit being randomly generated during
encryption and preserved across re-encryptions.

20

On the other hand, suppose a distinguisher exists that can with some proba-
bility ε distinguish between the outputs of UP-REENC01,m and UP-REENC00,m
for some m. Then there exists an adversary against our UP-REENC notion which
achieves advantage ε. This can be seen by the following simple argument. The ad-
versary gets C ←$Enc(1,m), C ′←$Enc(1,m) and submits the tuple (1, 2, C, C ′)
to its ReLR oracle and receives a re-encryption of one of the ciphertexts, C∗.
The adversary then runs the distinguisher on (C,C∗) and outputs whatever the
distinguisher guesses. If the distinguisher is computationally efficient, then so
too is the UP-REENC adversary.

6 Revisiting the BLMR Scheme

The fact that the simple KEM/DEM schemes of Section 4 fail to meet re-
encryption security begs the question of finding new schemes that achieve it, as
well as UP-IND and UP-INT security. Our starting point is the BLMR construc-
tion of an updatable encryption from key-homomorphic PRFs. Their scheme
does not (nor did it attempt to) provide integrity guarantees, and so trivially
does not meet UP-INT. But before seeing how to adapt it to become suitable
as an updatable AE scheme, including whether it meets our stronger notions
of UP-IND and UP-REENC security, we first revisit the claims of UP-IND-BI
security from [BLMR15].

As mentioned in the introduction, BLMR claim that the scheme can be shown
secure, and sketch a proof of UP-IND-BI security. Unfortunately the proof sketch
contains a bug, as we explain below. Interestingly revelation of this bug does
not lead to a direct attack on the scheme, and at the same time we could not
determine if the proof could be easily repaired. Instead we are able to show that
a proof is unlikely to exist.

Our main result of this section is the following: giving a proof showing the
BLMR UP-IND-BI security would imply the existence of a reduction show-
ing that (standard) IND-CPA security implies circular security [BRS03,CL01]
for a simple KEM/DEM style symmetric encryption scheme. The latter
seems quite unlikely given the known negative results about circular secu-
rity [ABBC10,CGH12], suggesting that the BLMR scheme is not likely to be
provably secure.

First we recall some basic tools that BLMR use to build their scheme.

Definition 7 (Key-homomorphic PRF [BLMR15]). Consider an effi-
ciently computable function F : K × X → Y such that (K,⊕) and (Y,⊗) are
both groups. We say that the tuple (F,⊕,⊗) is a key-homomorphic PRF if the
following properties hold:

1. F is a secure pseudorandom function.
2. For every k1, k2 ∈ K and every x ∈ X , F (k1, x)⊗ F (k2, x) = F (k1 ⊕ k2, x).

A simple example in the ROM is the function F (k, x) = H(x)k where Y = G
is a group in which the decisional Diffie–Hellman assumption holds.

21

As an application of key-homomorphic PRFs, BLMR proposed the follow-
ing construction. The construction follows a similar approach to the AE-hybrid
scheme, but by using a key-homomorphic PRF in place of regular encryption
the data encryption key can also be rotated.

Definition 8 (BLMR scheme). Let π be a symmetric-key IND-CPA encryp-
tion scheme π = (KG, E ,D). Furthermore, let F : K × X → Y be a key-
homomorphic PRF where (K,+) and (Y,+) are groups.

The BLMR scheme is the tuple of algorithms (KeyGen, Enc, ReKeyGen,
ReEnc, Dec) defined as follows:

– KeyGen(): returns k ← KG().
– Enc(k,m): samples a random x←$K and returns C̃ = E(k, x), and C =

(m1 + F (x, 1), . . . ,m` + F (x, `)).
– ReKeyGen(k1, k2, C̃): computes x = D(k1, C̃), samples a random x′←$K and

returns ∆1,2,C̃ = (C̃ ′ = E(k2, x
′), x′ − x).

– ReEnc(∆1,2,C̃ , (C̃, C)): parses token as ∆1,2,C̃ = (C̃ ′, y), computes C
′

=

(C1 + F (y, 1), . . . C` + F (y, l)) and returns (C̃ ′C
′
).

– Dec(k, (C̃, C)): computes x = D(C̃) and returns m = (C1−F (x, 1), . . . C`−
F (x, l)).

Note that encryption here essentially performs a key wrapping step followed
by CTR mode encryption using the wrapped key x and PRF F .

6.1 Negative Result about Provable UP-IND Security of BLMR

BLMR sketch a proof for the security of this construction in the UP-IND-BI
model (as we refer to it). However, the proof misses a subtle point: the inter-
action with the ReKeyGen oracle behaves similarly to a decryption oracle and
the informal argument given that the IND-CPA security of the KEM is suffi-
cient to argue security is wrong. In fact, the BLMR scheme seems unlikely to be
provably secure even in our basic security model. To argue this, we show that
proving security of the BLMR scheme implies the 1-circular security of a specific
KEM/DEM construction. Figure 6 depicts the security game capturing a simple
form of 1-circular security for an encryption scheme π = (KG, E ,D).

While our main result here (Theorem 6), can be stated for the BLMR scheme
as described earlier, for the sake of simplicity we instead give the result for the
special case of using a simple one-time pad DEM instead of the key-homomorphic
PRF. This is a trivial example of what BLMR call a key-homomorphic PRG,
and their theorem statement covers this construction as well. We will show that
proving security for this special case is already problematic, and this therefore
suffices to call into question their (more general) theorem. Thus encryption be-
comes Enc(k,m) = E(k, r), r ⊕ m where E is an IND-CPA secure KEM. We
assume |m| = n. We then have ReKeyGen(k1, k2, C̃) = (E(k2, r

′), r′ ⊕D(k1, C̃)).
We have the following theorem:

22

Game 1-circular

b←$ {0, 1}
k ←$KG()
if b = 1 then

C ←$ Enc(k, k)

else

U ←$ {0, 1}n

C ←$ Enc(k, U)

b
′ ←$A(C)

return (b = b
′
)

E(k,m)

return E(k,m)‖ 0

D(k, C‖ b)

if (b = 0) then

return D(k, C)

else

return k ⊕D(k, C)

Fig. 6. Left: The 1-circular security game. Right: Definition of E ,D used in the proof
of Theorem 6.

BLR,ReKeyGen

U ←$ {0, 1}n

(C̃‖0, C)←$LR(1, U, 0
n
)

(C̃
′‖0, C′

)←$ReKeyGen(1, 1, C̃‖ 1)

b
′ ←$A(C̃

′‖0, C + C
′
)

return b
′

Fig. 7. Adversary B for UP-IND using as a subroutine the adversary A attacking
1-circular security of EncBad.

Theorem 6. If one can reduce the BLMR UP-IND-BI-security to the IND-
CPA security of E, then one can show a reduction that Enc is 1-circular secure
assuming E is IND-CPA.

Proof. We start by introducing a slight variant of E , denoted E , shown in
Figure 6. It adds a bit to the ciphertext3 that is read during decryption: if
the bit is 1 then decryption outputs the secret key xor’d with the plaintext. Let
EncBad be the same as Enc above but using E , i.e., EncBad(k,m) = E(k, r), r⊕m
and ReKeyGenBad(k1, k2, C) = E(k2, r

′), r′ ⊕D(k1, C).
If E is IND-CPA then E is as well. Thus if E is IND-CPA, then the security

claim of BLMR implies that EncBad is UP-IND-BI. We will now show that
UP-IND-BI security of EncBad implies the 1-circular security of EncBad. In turn
it’s easy to see that if EncBad is 1-circular secure then so too is Enc, and, putting
it all together, the claim of BLMR implies a proof that IND-CPA of E gives 1-
circular security of Enc.

It remains to show that UP-IND-BI security implies EncBad 1-circular secu-
rity. Let A be a 1-circular adversary against EncBad. Then we build an adversary
B against the UP-IND security of EncBad. It is shown in Figure 7. The adversary
makes an LR query on a uniform message and the message 0n. If the UP-IND-BI
challenge bit is 1 then it gets back a ciphertext C1 = (E(k1, r)‖0, r ⊕ U) and if

3 Notice that this scheme is not tidy in the sense of [NRS14]. While that doesn’t affect
the implications of our analysis — BLMR make no assumptions about tidiness —
finding a tidy counter-example is an interesting open question.

23

it is 0 then C0 = (E(k1, r)‖0, r). Next it queries ReKeyGen oracle on the first
component of the returned ciphertext but with the trailing bit switched to 1. It
asks for a rekey token for rotating from k1 back to k1. The value returned by
this query is equal to E(k1, r

′)‖0, r′ ⊕ k1 ⊕ r. By XOR’ing the second compo-
nent with the second component returned from the LR query the adversary gets
finally a ciphertext that is, in the left world, the encryption of k1 under itself
and, in the right world, the encryption of a uniform point under k1. Adversary
B runs a 1-circular adversary A on the final ciphertext and outputs whatever A
outputs.

The above result uses 1-circular security for simplicity of presentation, but
one can generalize the result to longer cycles by making more queries.

The result is relative, only showing that a proof of BLMR’s claim implies
another reduction between circular security and IND-CPA security for the par-
ticular KEM/DEM scheme Enc above. It is possible that this reduction exists,
however it seems unlikely. Existing counter-examples show IND-CPA schemes
that are not circular-secure [KRW15]. While these counter-examples do not have
the same form as the specific scheme under consideration, it may be that one
can build a suitable counter-example with additional effort.

7 An Updatable AE Scheme with Re-encryption
Indistinguishability

We first point out that one can avoid the issues raised in Section 6 by replacing
the IND-CPA KEM with a proper AE scheme. This does not yet, however,
address integrity of the full encryption scheme. To provide integrity overall, we
can include a hash of the message in the ciphertext header. However, to prevent
this from compromising confidentiality during re-keying, we further mask the
hash by an extra PRF output.

This amended construction — which we refer to as ReCrypt — is detailed
in Figure 8. It uses an AE scheme π = (KG, E ,D), a key-homomorphic PRF
F : K ×X → Y, and a hash function h : {0, 1}∗ → Y.

In the remainder of this section we show that the new scheme meets our
strongest security notions for updatable encryption. We then assess the viabil-
ity of using this scheme in practice, discussing how to instantiate F for high
performance and reporting on performance of the full scheme.

7.1 Security of ReCrypt

We state three security theorems for ReCrypt: UP-IND, UP-INT, and UP-
REENC notions (proofs found in the full version). The proof of UP-INT relies
on the collision resistance of the hash h, while the other two proofs do not. For
simplicity, and because we will later instantiate the PRF F in the Random Ora-
cle Model (ROM), we model h as a random oracle throughout our analysis. This
modelling of h could be avoided using the approach of Rogaway [Rog06], since

24

KeyGen()

k ←$KG()
return k

Enc(k,m)

x, y ←$K
χ = x+ y

τ = h(m) + F (x, 0)

C̃ = E(k, (χ, τ))
for 1 ≤ l ≤ `

Cl = ml + F (x, l)

return (C̃, C = (y, C1, . . . , C`))

ReKeyGen(ki, kj , C̃)

(χ, τ) = D(ki, C̃)

if (χ, τ) =⊥ return ⊥

x
′
, y

′ ←$K

χ
′
= χ+ x

′
+ y

′

τ
′
= τ + F (x

′
, 0)

C̃
′ ←$ E(kj , (χ′

, τ
′
))

return ∆i,j,C̃ = (C̃
′
, x

′
, y

′
)

ReEnc(∆i,j,C̃ , (C̃, C))

(C̃
′
, x

′
, y

′
) = ∆i,j,C̃

y = C0

for 1 ≤ l ≤ `

C
′
l = Cl + F (x

′
, l)

return (C̃
′
, C

′
= (y + y

′
, . . . , C

′
`))

Dec(k, (C̃, C))

(χ, τ)←$D(k, C̃)

if (χ, τ) =⊥ return ⊥

y = C0

for 1 ≤ l ≤ `

ml = Cl − F (χ− y, l)
if h(m) + F (χ− y, 0) = τ then

return m = (m1, . . . ,m`)

else

return ⊥

Fig. 8. The ReCrypt scheme.

concrete collision-producing adversaries can be be extracted from our proofs.
Note also that the almost key-homomorphic PRF construction in the standard
model presented by BLMR would not achieve UP-REENC since the number of
re-encryptions is leaked by the ciphertext, allowing an adversary to distinguish
two re-encryptions.

Theorem 7 (UP-IND security of ReCrypt). Let π = (KG, E ,D) be an AE
scheme, F : K×X → Y be a key-homomorphic PRF, and let Π be the ReCrypt
scheme as depicted in Figure 8.

Then for any adversary A against Π, there exist adversaries B, C such that

Advup-indΠ,κ,t (A) ≤ 2t ·Advaeπ (B) + 2 ·AdvprfF (C)

for all κ ≥ 0, t ≥ 1.

Theorem 8 (UP-INT security of ReCrypt). Let π = (KG, E ,D) be an AE
scheme, F : K × X → Y be a key-homomorphic PRF, h be a cryptographic
hash function modelled as a random oracle with outputs in Y, and let Π be the
ReCrypt scheme as depicted in Figure 8.

Then for any adversary A against Π, there exists an adversary B such that

Advup-intΠ,κ,t (A) ≤ 2t ·Advaeπ (B) +
q2 + q2h
|Y|

+
q2

|X | · |Y|

for all κ ≥ 0, t ≥ 1, where the adversary makes qh queries to h, and q oracle
queries.

25

Theorem 9 (UP-REENC security of ReCrypt). Let π = (KG, E ,D) be an
AE scheme, F : K × X → Y be a key-homomorphic PRF, and let Π be the
ReCrypt scheme as depicted in Figure 8.

Then for any adversary A against Π, there exist adversaries B, C such that

Advup-reencΠ,κ,t (A) ≤ 2t ·Advaeπ (B) + 2 ·AdvprfF (C)

for all κ ≥ 0, t ≥ 1.

The proofs for UP-IND, UP-INT and UP-REENC follow a similar structure,
proceeding in two phases. In the first phase, the AE security of π is used to show
that the value of x is hidden from an adversary. In the second phase, the PRF
security of F is used to show that outputs are indistinguishable to an adversary
with no knowledge of x. Full proofs are found in the full version.

7.2 Instantiating the Key-homomorphic PRF

We dedicate the remainder of this section to analysis of ReCrypt for use in prac-
tical scenarios. We delve into the implementation details of the key-homomorphic
PRF in order to further explore some of the subtle security issues that arise when
instantiating our scheme in practice.

While BLMR construct key-homomorphic PRFs in the standard model, a
more efficient route is to use the classic ROM construction due originally to
Naor, Pinkas, and Reingold [NPR99] in which F (k, x) = k · H(x) where H
is modelled as a random oracle H : X → G and G is a group (now written
additively, since we shall shortly move to the elliptic curve setting) in which
the decisional Diffie–Hellman (DDH) assumption holds.

Instantiation details. We will use (a subgroup of) G = E(Fp), an elliptic curve
over a prime order finite field. However, recall that encryption is done block-wise
as Cl = ml + F (x, l). Implicitly, it is assumed that messages m are already in
the group G. To make a practical scheme for encrypting data represented as
bitstrings, we additionally require an encoding function σ : {0, 1}n → G.

Additionally, the existence of such a function proves useful in the construction
of the PRF: we show how to instantiate the random oracle H using a regular
cryptographic hash function h : {0, 1}∗ → {0, 1}n, modelled as a random oracle,
together with the encoding function. We also use this definition of H for the
instantiation of the random oracle used in the computation of the ciphertext
header, which was needed to provide integrity. However, we add a unique prefix
to inputs to either computation of H to provide separation.

For a suitable message encoding function, we of course require the function
and its inverse to be efficiently computable. However, in addition we also require
the inverse to be uniquely defined. Suppose σ−1 is defined for all P ∈ G; then
there is the possibility of creating a conflict with the integrity requirements. For
example, suppose we have two points P, P ′ such that σ−1(P) = σ−1(P ′) = m.
Then an adversary can potentially exploit this collision in σ−1 to construct a

26

forged ciphertext. While this might not threaten the integrity of the plaintext,
it would become problematic for ciphertext integrity.

One solution to this is to add a check to σ to verify that σ(σ−1(P)) = P ,
and return ⊥ if not.

In the following theorem, we prove the security of the ReCrypt scheme when
instantiated with a carefully chosen encoding function, and the Naor-Pinkas-
Reingold PRF.

Theorem 10. Let G = E(Fp) be an elliptic curve of prime order in which
the DDH assumption holds. For n ∈ O (log #G) let the encoding function σ :
{0, 1}n → G be an injective mapping such that for any point P outside of the
range, i.e. P 6∈ {σ(x) : x ∈ {0, 1}n}, then σ−1(P) =⊥.

Let H : {0, 1}n → G be defined as H(x) = σ(h(x)) for a cryptographic hash
function h modelled as a random oracle.

Then F (k, x) = k ·H(x) is a key-homomorphic PRF.

By rejecting encoded messages outside of the range of σ, we effectively restrict
σ to be a bijection from {0, 1}n to a subset of G. Given this, it is easy to see
instantiating ReCrypt with this message encoding and key-homomorphic PRF
results in a secure updatable AE scheme as proven above.

We identified two candidates for the message encoding function. The first
uses rejection sampling, in which a bitstring is first treated as an element of
Fp, with some redundancy, and subsequently mapped to the elliptic curve. If a
matching point cannot be found on the curve, the value is incremented (using
the redundancy) and another attempt is made. Repeating this process results in
a probabilistic method.

Corollary 1. Define the encoding function σ : x 7→ E(Fp) mapping bitstrings of
length n to group elements by first equating the bitstring as an element x ∈ Fp.
Let x̄ be the minimum value of the set {x + i · 2n : 0 ≤ i <

⌊
p
2n

⌋
} such

that (x̄, y) ∈ E(Fp) for some y. Then define σ(x) to be the point (x̄, ȳ) where
ȳ = min{y, p− y}.

The inverse mapping σ−1(P) is computed by taking the x-coordinate and
reducing mod 2n. I.e. set x′ = x(P) mod 2n and verify P 6= σ(x′), otherwise
return ⊥.

Then σ satisfies the requirements of Theorem 10.

See the full version Theorem 10 and Corollary 1.

As an alternative to rejection sampling, an injective mapping can be used
directly, again first treating the bitstring as an element of Fp. Some examples
include the SWU algorithm [SvdW06], Icart’s function [Ica09], and the Elligator
encoding [BHKL13].

Corollary 2. For a compatible elliptic curve E(Fp), the Elligator function as
defined in [BHKL13] satisfies the requirement of Theorem 10 for all m ∈
{0, 1}blog(p−1)c−1

Proof. The Elligator function maps injectively from {1, . . . , p−12 } to E(Fp). For

the inverse map, if the returned value is greater than p−1
2 , we return ⊥.

27

7.3 Implementation and Performance

We now provide a concrete instantiation of the ReCrypt scheme using the method
described in Section 7.2 and report on the performance of our prototype imple-
mentation. Our goal is assess the performance gap between in-use schemes that
do not meet UP-REENC security, and ReCrypt, which does.

Implementation. We built our reference implementation using the Rust [MKI14]
programming language. This implementation uses Relic [AG], a cryptographic
library written in C, and the GNU multi-precision arithmetic library (GMP).
Our implementation is single-threaded and we measured performance on an Intel
CPU (Haswell), running at 3.8GHz in turbo mode.

We use secp256k1 [Cer00] for the curve and SHA256 as the hash function h.
The plaintext block length is 31 bytes. We use AES128-GCM for the AE scheme
π.

The Relic toolkit provided a number of different curve options, as well as
access to the low level elliptic curve operations which was essential in our early
prototyping and testing. However, Relic does not at the time of writing support
curves in Montgomery form, and therefore has an inefficient implementation of
scalar multiplication on Curve25519. Therefore, we choose secp256k1 because
it was the most performant among all curve implementations at our disposal
with (approximately) 128 bits of security. We project that Curve25519 would
offer comparable efficiency, whereas a hand-tuned, optimised variant of a specific
curve would result in a significant speedup.

We use a 31-byte block size with the random sampling encoding algorithm,
resulting in a probability of 1− 2−256 to find a valid encoding for each block.

We also experimented with the injective encodings such as the Elligator en-
coding [BHKL13]. The mapping did not appear to improve performance, and
moreover is incompatible with secp256k1. Additionally, we do not require ci-
phertexts to be indistinguishable from random, one of the key benefits offered
by the Elligator encoding.

When a curve point is serialized, only the x coordinate and the sign of the
y coordinate (1-bit) needs to be recorded (using point compression). Since the
x coordinate requires strictly less than the full 32 bytes, we can serialize points
as 32 byte values. Each 32 byte serialized value represents 31 bytes of plaintext
giving a ciphertext expansion of 3%. Upon deserialization, the y coordinate must
be recomputed. This requires computing a square root, taking approximately
20 µs. Of course this cost can be avoided by instead serializing both x and y
coordinates. This creates a 64 byte ciphertext for each 31 bytes of plaintext
which is an expansion of 106%. We consider that to be unacceptable.

Microbenchmarks. Figure 9 shows wall clock times for ReCrypt operations over
various plaintext sizes. As might be expected given the nature of the crypto-
graphic operations involved, performance is far from competitive with conven-
tional AE schemes. For comparison, AES-GCM on the same hardware platform
encrypts 1 block, 1 KB, 1 MB and 1 GB of plaintext in 15 µs, 24 µs, 9 ms, and

28

ReCrypt Time per CPU
Operation 1 block 1 KB 1 MB 1 GB cycles/byte

Encrypt 663 µs 10.0 ms 9.2 s 2.6 hours 32.4 K
ReEnc 302 µs 8.8 ms 8.7 s 2.4 hours 30.7 K
Decrypt 611 µs 9.1 ms 8.6 s 2.4 hours 30.6 K

ReKeyGen (total) 450 µs 1.96 M

Fig. 9. Processing times for ReCrypt operations measured on a 3.8GHz CPU. 1 block
represents any plaintext ≤ 31 bytes. Number of iterations: 1000 (for 1 block, 1 KB),
100 (for 1 MB) and 1 (for 1 GB). Cycles per byte given for 1MB ciphertexts.

11 s, respectively. KSS has performance determined by that of AES-GCM, while
the performance of the ReCrypt scheme is largely determined by the scalar mul-
tiplications required to evaluate the PRF. Across all block sizes there is a 1000x
performance cost to achieve our strongest notion of security.

Discussion. Given this large performance difference, ReCrypt is best suited to
very small or very valuable plaintexts (ideally, both). Compact and high-value
plaintexts such as payment card information, personally identifiable informa-
tion, and sensitive financial information are likely targets for ReCrypt. If the
plaintext corpus is moderately or very large, cost and performance may prohibit
practitioners from using ReCrypt over more performant schemes like KSS that
give strictly weaker security.

8 Conclusion and Open Problems

We have given a systematic study of updatable AE, providing a hierarchy of
security notions meeting different real-world security requirements and schemes
that satisfy them efficiently. Along the way, we showed the limitations of cur-
rently deployed approach, as represented by AE-hybrid, improved it at low cost
to obtain the KSS scheme meeting our UP-IND and UP-INT notions, identified
a flaw in the BLMR scheme, repaired it, and showed how to instantiate the re-
paired scheme in the ROM. Through this, we arrived at ReCrypt, a scheme that
is secure in our strongest security models (UP-IND, UP-INT and UP-REENC).
We implemented ReCrypt and presented basic speed benchmarks for our proto-
type. The scheme is slow compared to the hybrid approaches but offers true key
rotation.

Our work puts updatable AE on a firm theoretical foundation and brings
schemes with improved security closer to industrial application. While there is a
rich array of different security models for practitioners to chose from, it is clear
that achieving strong security (currently) comes at a substantial price. Mean-
while weaker but still useful security notions can be achieved at almost zero cost
over conventional AE. It is an important challenge to find constructions which
lower the cost compared to ReCrypt without reducing security. But it seems that
fundamentally new ideas will be needed here, since what are essentially public
key operations are intrinsic to our construction.

29

From a more theoretical perspective, it would also be of interest to study the
exact relations between our security notions, in particular whether UP-REENC
is strong enough to imply UP-IND and UP-INT. There is also the question
of whether a scheme that is UP-REENC is necessarily ciphertext-dependent.
Finally, we reiterate the possibility of formulating updatable AE in the nonce-
based setting.

Acknowledgements

We thank the anonymous Crypto reviewers for their feedback and discussion re-
lating to a bug in our initial KSS construction, and for their additional comments
and suggestions. This work was supported in part by NSF grant CNS-1330308,
EPSRC grants EP/K035584/1 and EP/M013472/1, by a research programme
funded by Huawei Technologies and delivered through the Institute for Cyber
Security Innovation at Royal Holloway, University of London, and a gift from
Microsoft.

References

ABBC10. Tolga Acar, Mira Belenkiy, Mihir Bellare, and David Cash. Cryptographic
agility and its relation to circular encryption. In Henri Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 403–422. Springer, Hei-
delberg, May 2010.

ABL+14. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky
Mouha, and Kan Yasuda. How to securely release unverified plaintext in
authenticated encryption. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part I, volume 8873 of LNCS, pages 105–125. Springer,
Heidelberg, December 2014.

AG. D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for
Cryptography. https://github.com/relic-toolkit/relic.

AWS. AWS. Protecting data using client-side encryption. http://docs.aws.

amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html.
BDPS14. Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Mar-

tijn Stam. On symmetric encryption with distinguishable decryption fail-
ures. In Shiho Moriai, editor, FSE 2013, volume 8424 of LNCS, pages
367–390. Springer, Heidelberg, March 2014.

BHKL13. Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. El-
ligator: elliptic-curve points indistinguishable from uniform random strings.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 13, pages 967–980. ACM Press, November 2013.

BK03. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key
attacks: RKA-PRPs, RKA-PRFs, and applications. In Eli Biham, editor,
EUROCRYPT 2003, volume 2656 of LNCS, pages 491–506. Springer, Hei-
delberg, May 2003.

BLMR13. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-
nathan. Key homomorphic PRFs and their applications. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 410–428. Springer, Heidelberg, August 2013.

https://github.com/relic-toolkit/relic
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html

30

BLMR15. Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Key
homomorphic PRFs and their applications. Cryptology ePrint Archive,
Report 2015/220, 2015. http://eprint.iacr.org/2015/220.

BN00. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm.
In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS,
pages 531–545. Springer, Heidelberg, December 2000.

BRS03. John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme
security in the presence of key-dependent messages. In Kaisa Nyberg and
Howard M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 62–75.
Springer, Heidelberg, August 2003.

Cer00. SEC Certicom. Sec 2: Recommended elliptic curve domain parameters.
Proceeding of Standards for Efficient Cryptography, Version, 1, 2000.

CGH12. David Cash, Matthew Green, and Susan Hohenberger. New definitions and
separations for circular security. In Marc Fischlin, Johannes Buchmann, and
Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 540–557.
Springer, Heidelberg, May 2012.

CH07. Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-
encryption. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson, editors, ACM CCS 07, pages 185–194. ACM Press, October 2007.

CK05. DL Cool and Angelos D Keromytis. Conversion and proxy functions for
symmetric key ciphers. In Information Technology: Coding and Computing,
2005. ITCC 2005. International Conference on, volume 1, pages 662–667.
IEEE, 2005.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation. In
Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages
93–118. Springer, Heidelberg, May 2001.

Goo. Google. Managing data encryption. https://cloud.google.com/storage/
docs/encryption.

Ica09. Thomas Icart. How to hash into elliptic curves. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 303–316. Springer, Heidelberg,
August 2009.

ID03. Anca Ivan and Yevgeniy Dodis. Proxy cryptography revisited. In
NDSS 2003. The Internet Society, February 2003.

KRW15. Venkata Koppula, Kim Ramchen, and Brent Waters. Separations in circular
security for arbitrary length key cycles. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 378–400.
Springer, Heidelberg, March 2015.

MKI14. Nicholas D Matsakis and Felix S Klock II. The rust language. ACM SIGAda
Ada Letters, 34(3):103–104, 2014.

NPR99. Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random
functions and KDCs. In Jacques Stern, editor, EUROCRYPT’99, volume
1592 of LNCS, pages 327–346. Springer, Heidelberg, May 1999.

NRS14. Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Re-
considering generic composition. In Phong Q. Nguyen and Elisabeth Os-
wald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 257–274.
Springer, Heidelberg, May 2014.

PCI16. PCI Security Standards Council. Requirements and security assessment
procedures. In PCI DSS v3.2, 2016.

http://eprint.iacr.org/2015/220
https://cloud.google.com/storage/docs/encryption
https://cloud.google.com/storage/docs/encryption

31

PRS11. Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size
does matter: Attacks and proofs for the TLS record protocol. In Dong Hoon
Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS,
pages 372–389. Springer, Heidelberg, December 2011.

Rog06. Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen, ed-
itor, Progressin Cryptology - VIETCRYPT 2006, First International Con-
ferenceon Cryptology in Vietnam, Hanoi, Vietnam, September 25-28, 2006,
Revised Selected Papers, volume 4341 of Lecture Notes in Computer Science,
pages 211–228. Springer, 2006.

RS06. Phillip Rogaway and Thomas Shrimpton. Deterministic authenticated-
encryption: A provable-security treatment of the key-wrap problem. Cryp-
tology ePrint Archive, Report 2006/221, 2006. http://eprint.iacr.org/

2006/221.
RSS11. Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with

composition: Limitations of the indifferentiability framework. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506.
Springer, Heidelberg, May 2011.

SvdW06. Andrew Shallue and Christiaan E van de Woestijne. Construction of rational
points on elliptic curves over finite fields. In Algorithmic number theory,
pages 510–524. Springer, 2006.

A Bidirectional Updatable AE

A.1 XOR-KEM: A Bidirectional Updatable AE Scheme

The AE-hybrid and KSS schemes are unidirectional and ciphertext-dependent.
This means that in practice the client must fetch from storage ciphertext headers
in order to compute the rekey tokens needed to update individual ciphertexts. It
could be simpler to utilize a ciphertext-independent scheme that has rekey tokens
that work for any ciphertext encrypted with a particular key. This would make
the re-encryption process “non-interactive”, requiring that the key holder only
push a single rekey token to the place where ciphertexts are stored. Given the ob-
vious performance benefits that such a scheme would have, we also provide such
a scheme, called XOR-KEM. This scheme is exceptionally fast, and is built from
a (non-updatable) AE scheme that is assumed to be secure against a restricted
form of related-key attack (RKA). This latter notion adapts the Bellare-Kohno
RKA-security notions for block ciphers [BK03] to the setting of AE schemes.
To the best of our knowledge, this definition is novel, and RKA secure AE may
itself be of independent interest as a primitive. However, the XOR-KEM scheme
cannot meet our integrity notions against an attacker in possession of compro-
mised keys. (And because of its bidirectionality, XOR-KEM also provides the
counter-example that we used to separate UP-IND-BI and UP-IND security in
Section 3.1.)

Let (K,E ,D) be an AE scheme. Then we define the ciphertext-independent
scheme, XOR-KEM, as follows:

– KeyGen(): return k ← K

http://eprint.iacr.org/2006/221
http://eprint.iacr.org/2006/221

32

– Enc(k,m): x← K; C ← (x⊕ k, E(x,M)); return C
– ReKeyGen(k1, k2): return ∆1,2 = k1 ⊕ k2
– ReEnc(∆1,2, C = (C0, C1)): C ′ ← (∆1,2 ⊕ C0, C1); return C ′

– Dec(k,C = (C0, C1)): return D(C0 ⊕ k,C1)

The XOR-KEM scheme has a similar format to the AE-hybrid scheme above.
However, instead of protecting the DEM key x by encrypting it, we instead
XOR it with the secret key k. The resulting scheme becomes a bidirectional,
ciphertext-independent scheme, and one that has extremely high performance
and deployability.

Note that although the value x⊕ k fulfils a similar purpose as the ciphertext
header in AE-hybrid, since this value is not needed in re-keying, it resides in the
ciphertext body.

We provide proofs in the full version that this scheme achieves UP-IND-BI,
and UP-INT-BI. However, the latter only holds when the adversary does not
have access to any corrupted keys, and relies on the AE scheme being secure
against a class of related-key attacks.

	Key Rotation for Authenticated Encryption
	1 Introduction
	2 Updatable AE
	3 Confidentiality and Integrity for Updatable Encryption
	3.1 Message Confidentiality
	3.2 Ciphertext Integrity

	4 Practical Updatable AE Schemes
	4.1 Authenticated Encryption
	4.2 (In-)Security of AE-hybrid Construction
	4.3 Improving AE-hybrid

	5 Indistinguishability of Re-encryptions
	6 Revisiting the BLMR Scheme
	6.1 Negative Result about Provable UP-IND Security of BLMR

	7 An Updatable AE Scheme with Re-encryption Indistinguishability
	7.1 Security of ReCrypt
	7.2 Instantiating the Key-homomorphic PRF
	7.3 Implementation and Performance

	8 Conclusion and Open Problems
	A Bidirectional Updatable AE
	A.1 XOR-KEM: A Bidirectional Updatable AE Scheme

