648 research outputs found

    N=2 Supersymmetric Sigma Models and D-branes

    Full text link
    We study D-branes of N=2 supersymmetric sigma models. Supersymmetric nonlinear sigma models with 2-dimensional target space have D0,D1,D2-branes, which are realized as A-,B-type supersymmetric boundary conditions on the worldsheet. When we embed the models in the string theory, the Kahler potential is restricted and leads to a 2-dim black hole metric with a dilaton background. The D-branes in this model are susy cycles and consistent with the analysis of conjugacy classes. The generalized metrics with U(n) isometry is proposed and dynamics on them are realized by linear sigma models. We investigate D-branes of the linear sigma models and compare the results with those in the nonlinear sigma models.Comment: 23 pages, 5 figure

    On the Baryonic Branch Root of N=2 MQCD

    Get PDF
    We investigate the brane exchange in the framework of N=2 MQCD by using a specific family of M fivebrane configurations relevant to describe the baryonic branch root. An exchange of M fivebranes is realized in the Taub-NUT geometry and controlled by the moduli parameter of the configurations. This family also provides two different descriptions of the root. These descriptions are examined carefully using the Taub-NUT geometry. It is shown that they have the same baryonic branch and are shifted each other by the brane exchange.Comment: LaTeX, 25 pages, 7 figures, references adde

    STATISTICAL ISSUES IN THE ANALYSIS OF MICROBIAL COMMUNITIES IN SOIL

    Get PDF
    Corn and soybean production dominates the agricultural systems of the mid-western United States. Studies have found that when a single crop species is grown continually, without the rotation of other crops, yield decline occurs. At present, this phenomenon, remains poorly understood, but there are possible links to microbial community dynamics in the associated rhizosphere soil. In this study, corn plants were grown in disturbed and undisturbed soils with a 24 year history of growth as a mono culture crop or two crops grown in annual rotation. Characteristic profiles of the microbial communities were obtained by denaturing gradient gel electrophoresis of polymerase chain reaction amplified 16S rDNA from soil extracted DNA. This problem is approached as the statistical analysis of high-dimensional multivariate binary data with an emphasis on modeling and variable selection

    Nonperturbative Renormalization Group Equation and Beta Function in N=2 SUSY Yang-Mills

    Get PDF
    We obtain the exact beta function for N=2N=2 SUSY SU(2)SU(2) Yang-Mills theory and prove the nonperturbative Renormalization Group Equation ΛF(a,Λ)=ΛΛ0Λ0F(a0,Λ0)e2τ0τdxβ1(x). \partial_\Lambda{\cal F}(a,\Lambda)= {\Lambda\over \Lambda_0}\partial_{\Lambda_0}{\cal F}(a_0,\Lambda_0) e^{-2\int_{\tau_0}^\tau {dx \beta^{-1}(x)}}. Comment: LaTex, 10 pg. Expanded introduction, references added, to appear in Phys. Rev. Let

    The Extreme Kerr Throat Geometry: A Vacuum Analog of AdS_2 x S^2

    Full text link
    We study the near horizon limit of a four dimensional extreme rotating black hole. The limiting metric is a completely nonsingular vacuum solution, with an enhanced symmetry group SL(2,R) x U(1). We show that many of the properties of this solution are similar to the AdS_2 x S^2 geometry arising in the near horizon limit of extreme charged black holes. In particular, the boundary at infinity is a timelike surface. This suggests the possibility of a dual quantum mechanical description. A five dimensional generalization is also discussed.Comment: 21 page

    On Effective Superpotentials and Compactification to Three Dimensions

    Full text link
    We study four dimensional N=2 SO/SP supersymmetric gauge theory on R^3\times S^1 deformed by a tree level superpotential. We will show that the exact superpotential can be obtained by making use of the Lax matrix of the corresponding integrable model which is the periodic Toda lattice. The connection between vacua of SO(2N) and SO(2kN-2k+2) can also be seen in this framework. Similar analysis can also be applied for SO(2N+1) and SP(2N).Comment: 18 pages, latex file, v2: typos corrected, refs adde

    μ1B, a novel adaptor medium chain expressed in polarized epithelial cells11The nucleotide sequences reported in this paper have been submitted to GenBank with accession numbers AF020797 (human μ1B) and AF067146 (mouse μ1B).

    Get PDF
    AbstractThe apical and basolateral plasma membrane domains of polarized epithelial cells contain distinct sets of integral membrane proteins. Biosynthetic targeting of proteins to the basolateral plasma membrane is mediated by cytosolic tail determinants, many of which resemble signals involved in the rapid endocytosis or lysosomal targeting. Since these signals are recognized by adaptor proteins, we hypothesized that there could be epithelial-specific adaptors involved in polarized sorting. Here, we report the identification of a novel member of the adaptor medium chain family, named μ1B, which is closely related to the previously described μ1A (79% amino acid sequence identity). Northern blotting and in situ hybridization analyses reveal the specific expression of μ1B mRNA in a subset of polarized epithelial and exocrine cells. Yeast two-hybrid analyses show that μ1B is capable of interacting with generic tyrosine-based sorting signals. These observations suggest that μ1B may be involved in protein sorting events specific to polarized cells

    Nonperturbative Superpotentials and Compactification to Three Dimensions

    Full text link
    We consider four-dimensional N=2 supersymmetric gauge theories with gauge group U(N) on R^3 x S^1, in the presence of a classical superpotential. The low-energy quantum superpotential is obtained by simply replacing the adjoint scalar superfield in the classical superpotential by the Lax matrix of the integrable system that underlies the 4d field theory. We verify in a number of examples that the vacuum structure obtained in this way matches precisely that in 4d, although the degrees of freedom that appear are quite distinct. Several features of 4d field theories, such as the possibility of lifting vacua from U(N) to U(tN), become particularly simple in this framework. It turns out that supersymmetric vacua give rise to a reduction of the integrable system which contains information about the field theory but also about the Dijkgraaf-Vafa matrix model. The relation between the matrix model and the quantum superpotential on R^3 x S^1 appears to involve a novel kind of mirror symmetry.Comment: LaTeX, 45 pages, uses AmsMath, minor correction, reference adde

    Non-holomorphic terms in N=2 SUSY Wilsonian actions and RG equation

    Full text link
    In this paper we first investigate the Ansatz of one of the present authors for K(\Psi,\bar\Psi), the adimensional modular invariant non-holomorphic correction to the Wilsonian effective Lagrangian of an N=2 globally supersymmetric gauge theory. The renormalisation group beta-function of the theory crucially allows us to express K(\Psi,\bar\Psi) in a form that easily generalises to the case in which the theory is coupled to N_F hypermultiplets in the fundamental representation of the gauge group. This function satisfies an equation which should be viewed as a fully non-perturbative ``non-chiral superconformal Ward identity". We also determine its renormalisation group equation. Furthermore, as a first step towards checking the validity of this Ansatz, we compute the contribution to K(\Psi,\bar\Psi) from instantons of winding number k=1 and k=2. As a by-product of our analysis we check a non-renormalisation theorem for N_F=4.Comment: 39 pages, LaTex file, no figure

    N=1 G_2 SYM theory and Compactification to Three Dimensions

    Full text link
    We study four dimensional N=2 G_2 supersymmetric gauge theory on R^3\times S^1 deformed by a tree level superpotential. We will show that the exact superpotential can be obtained by making use of the Lax matrix of the corresponding integrable model which is the periodic Toda lattice based on the dual of the affine G_2 Lie algebra. At extrema of the superpotential the Seiberg-Witten curve typically factorizes, and we study the algebraic equations underlying this factorization. For U(N) theories the factorization was closely related to the geometrical engineering of such gauge theories and to matrix model descriptions, but here we will find that the geometrical interpretation is more mysterious. Along the way we give a method to compute the gauge theory resolvent and a suitable set of one-forms on the Seiberg-Witten curve. We will also find evidence that the low-energy dynamics of G_2 gauge theories can effectively be described in terms of an auxiliary hyperelliptic curve.Comment: 27 pages, late
    corecore