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1 Department of Statistics, Purdue University, West Lafayette, IN 47907-1399 
2 Computational Genomics, Purdue University, West Lafayette, IN 47907 

3 Department of Agronomy, Purdue University, West Lafayette, IN 47907-1150 
4 Indian Statistical Institute, Calcutta, India 

ABSTRACT 

Corn and soybean production dominates the agricultural systems of the mid-western United 
States. Studies have found that when a single crop species is grown continually, without the 
rotation of other crops, yield decline occurs. At present, this phenomenon, remains poorly 
understood, but there are possible links to microbial community dynamics in the associated 
rhizosphere soil. In this study, corn plants were grown in disturbed and undisturbed soils 
with a 24 year history of growth as a mono culture crop or two crops grown in annual rotation. 
Characteristic profiles of the microbial communities were obtained by denaturing gradient gel 
electrophoresis of polymerase chain reaction amplified 16S rDNA from soil extracted DNA. 
This problem is approached as the statistical analysis of high-dimensional multivariate binary 
data with an emphasis on modeling and variable selection. 
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1. Introduction 

Growing the same crop in a field every year results in lower yields, on the average, than does 
the practice ofrotating crops (e.g., corn and soybean) between fields. Furthermore, long-term 
analysis of yields suggests a negative, synergistic interaction between the forces controlling 
the mono culture yield decline and the yield depression associated with corn grown under 
no-till residue management (West et al., 1996). Recent efforts to identify the mechanisms 
of monoculture yield decline have shifted the emphasis from unknown abiotic (i.e., non­
living) components of the ecosystem to biotic phenomena (i.e., caused by living organisms) 
mediated by the microbial community present in the rhizosphere soil (Chiarini et al., 1998). 
That is to say, the group of several different microbial populations (i.e., species) that live 
in portion of soil volume in intimate contact with the growing root system. Historically, 
the technology available to researchers interested in studying microbial communities has 
been severely limited. Prior to the development of molecular methods for microbial ecology, 
researchers were limited to inference based on only a small percentage of the microbial 
populations in a community: those that could be isolated and cultivated in laboratory media. 
The percentage of all bacteria that can be cultivated in the laboratory has been estimated 
to be between 0.1 and 10% and as such any inference based on cultivation techniques is 
likely to be biased. Advances in biotechnology are providing molecular methods to study the 
general ecology of microbial communities in the environment. In order to fully appreciate the 
biological and statistical issues associated with these molecular methods, an understanding of 
both the cellular structure of microorganisms and the laboratory techniques used to produce 
microbial community fingerprints is necessary. 

2. Microorganisms 

In any cell, the genetic information is stored in the chromosome(s) in the form of a double 
stranded macromolecule called deoxyribonucleic acid (DNA). Most microorganisms have only 
a single chromosome consisting of a, usually circular, DNA molecule which coils tightly to 
form a compact structure known as the nucleoid. Around the perimeter of all cells there is a 
cytoplasmic membrane that regulates the flow of materials in and out of the cell. In addition, 
most microorganisms have a cell wall located just outside the cytoplasmic membrane that 
is thicker than the membrane and serves as additional protection for the cell. Inside the cell 
is the cytoplasm, a mixture of substances and structures that carry out the functions of the 
cell. Among the most abundant cytoplasmic structures in the cell are ribosomes, each one 
consisting of ribonucleic acid (RNA) molecules and related proteins. The function of RNA 
in the cell is to transcribe the genetic information present in the DNA and translate it into 
proteins. This process, called protein synthesis, takes place at the ribosome. 

2.1 Microbial genetics 

Ribosomes are composed of two similar subunits held together by magnesium bonds. The 
smaller of the two subunits contains the 168 rRNA molecule, which consists of sequences of 
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nucleotides that are highly conserved among related microorganisms along with a few more 
variable sequences. This structure allows for effective discrimination between different mi­
croorganisms (Pace et al., 1986). For example, some of the more highly conserved nucleotide 
sequences common to all bacteria can be used to distinguish bacteria from other organisms, 
while some of the more variable sequences can be used to discriminate between the many 
different species of bacteria. 

Much of the molecular methodology presently used in microbial ecology utilizes the 168 
rRNA molecule. Other factors which make the choice of 168 rRNA molecule favorable are 
the natural amplification of this molecule within the organism due to the large number 
of ribosomes in each cell, and the availability of the Ribosomal Database Project (RDP­
II) (Maidak et al., 2001), which contains over 16,000 different 168 rRNA sequences for 
comparison. Likewise, the regions of the bacterial chromosome, referred to collectively as the 
168 rDNA, which correspond to (or code for) the 168 rRNA, have these same advantageous 
properties and are often used in microbial community analysis. 

The 168 rDNA, like all other DNA molecules are composed of two complimentary strands 
of nucleotide bases: the forward, or 5' -+ 3', strand and the reverse, or 3' -+ 5', strand. 
In DNA, each nucleotide base is made up of 3 components: the sugar, deoxyribose; the 
phosphate group; and one of four possible nitrogenous bases: Adenine (A), Cytosine (C), 
Guanine (G) and Thymine (T). The two strands of the DNA molecule are held together 
by hydrogen bonds between complementary bases, A bonding with T, and C bonding with 
G. Therefore, if enough energy is applied to a DNA molecule the two strands will separate. 
This denaturation can be caused by raising either temperature or the pH of the nucleic 
acid solution or by adding a chemical denaturant such as urea or formamide. Thermal 
denaturation is often referred to as melting and the temperature at which the two strands 
will separate is referred to as the Tm of the sequence. The Tm, the pH or the concentration 
of chemical denaturant at which the two strands of a particular DNA molecule will begin to 
separate is determined by the length and composition of its nucleotide sequence. In general, 
more energy is required for separation of longer DNA sequences than for shorter sequences. 
However, separation of DNA fragments of similar lengths may require more or less energy 
depending on their nucleotide sequence composition. This is due to the differing number of 
hydrogen bonds that join nucleotide base pairs. A and T nucleotide bases are joined by 2 
hydrogen bonds, while C and G nucleotide bases are joined by 3 hydrogen bonds. Therefore, 
in general, more energy is required to denature so-called "G+C rich" DNA fragments than 
for those with a smaller proportion of G and C nucleotide bases. 

3. Microbial community fingerprinting 

Detailed laboratory protocols for extraction and purification of microbial community DNA 
from a number of different environmental media (e.g., soil) have been detailed in Akkermans 
et al. (1996). In general, the process begins with the isolation of the organisms of interest by 
centrifugation. Then the cells are lysed, or broken open, in order to release the chromosomal 
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DNA from each organism in the solution. The microbial community DNA is then separated 
from the remainder of the solution by centrifugation. 

Having obtained a purified nucleic acid solution from the the environmental sample, poly­
merase chain reaction (peR) (Saiki et al., 1985) is applied to the solution in order to amplify 
the number of copies of some specific region of the 16S rDNA available for analysis. peR is 
a cyclical process for DNA replication and in this situation it is used to amplify the number 
of copies of a specific region of the 16S rDNA that is known to be highly variable between 
bacterial species. 

Denaturing gradient gel electrophoresis (DGGE) can then be applied to the peR amplified 
fragments of the microbial community 16S rDNA. This technique, and to a lesser extent 
thermal gradient gel electrophoresis (TGGE), are now commonly used by researchers in 
an increasing number of fields to produce characteristic profiles of microbial communities 
(Muyzer and Smalla, 1998). DGGE is a method by which DNA fragments of similar length 
can be separated on the basis of their nucleotide sequence composition in a polyacrylamide 
gel containing a linearly increasing concentration of chemical denaturant. Each fragment, 
aided by an electric field, migrates down the porous polyacrylamide gel until it reaches the 
location in the gel at which the concentration of denaturant causes partial separation of the 
two strands of the DNA fragment. When the two strands begin to separate, the fragment 
becomes too large to migrate any further down through the polyacrylamide and it stops. 
TGGE operates on the same principle, but rather than using a gradient of the concentration 
of chemical denaturant, it uses a thermal gradient to separate the DNA fragments on the 
basis of their Tm. When the electrophoretic process has been completed the polyacrylamide 
gel is stained with a fluorescent dye, such as Ethidium bromide or SYBER Green I, that 
illuminates the characteristic profile of DNA fragments present in the gel. 

Since the objective of microbial community DNA fingerprinting is to produce a characteristic 
profile of the community of interest, we can take advantage of the aforementioned molecular 
technology to produce the necessary data. Most often this profile takes the form of a lane 
of illuminated bands which indicate the presence of the different microbial populations in 
the community. These fingerprints can then be used as a basis for between community 
comparisons. Figure 1 illustrates an example of representative profiles from rhizosphere soil 
communities extracted from corn grown under four different agronomic treatments. 

In practice, characteristic profiles for approximately 12-20 different communities can be 
generated side by side in vertical lanes on a single gel. Each gel contains at least one 
profile of a nucleic acid solution of known composition, and is referred to as the standard 
or "marker" lane that facilitates comparisons between lanes on different gels. In order to 
make comparisons between community fingerprint patterns the gels must be "scored." That 
is to say, the patterns of illuminated bands must be converted into data vectors, whose 
elements are indicator variables for each of the different bands present across all samples. 
This scoring is accomplished either manually, if the data are simple, or in most cases by a 
computer software package, such as Bionumerics (Applied Maths, Kortijk, Belgium), that 
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is specifically designed to score images of community fingerprint gels. If further analysis 
indicates that a particular band is of interest, the band can be excised from the gel and 
sequenced for identification in the RDP. 

3.1 Limitations of molecular methods used for microbial ecology 

As with all molecular techniques there are limitations to the methods described that may 
affect the reliability of community fingerprint data to varying degrees. First, the process of 
extracting the nucleic acids from the environmental sample may be inefficient and/or biased. 
Typically, it is difficult to assess the efficiency of the nucleic acid extractions because the total 
amount of nucleic acid present in the sample is usually unknown. However, protocols for 
effective nucleic acid extraction specific to the environment from which the sample is taken 
have been detailed in Akkermans et al. (1996). In addition to the problem of inefficiency, 
there is evidence that small cells (0.3 to 1.2 J.1,m) are more resistant to cell lysis than larger 
cells. This indicates that there is the potential that the purified nucleic acid solution obtained 
may not be representative of the actual community present in the environmental sample. If 
true, this may lead to systematically biased community fingerprint data. Additionally, there 
is also variability present in the peR process. In general, the peR amplification does not 
maintain the proportions of the various microbial populations present in the community DNA 
extracted from the environmental sample. However, this does not usually have a significant 
effect on community fingerprint data. Another source of variability in the peR process that 
is more likely to significantly affect community fingerprint data are chimeric sequences, which 
result from two strands of DNA from different organisms annealing to one another during 
one of the amplification cycles. If this happens early in the peR amplification it can result 
in a large number of copies of these chimera, and in bands in the community fingerprint, 
that correspond to no particular organism. 

3.2 Current quantitative methodology for microbial community DNA fingerprint analysis 

Protocols for extraction and purification of microbial community DNA were first developed 
for aquatic systems. Microbial communities from this environment tend to have fairly simple 
structure and the community fingerprints only contain a few bands. Visual comparison of 
community profiles was sufficient in most cases to observe which communities were most 
similar and which were different. As techniques for the extraction of microbial community 
DNA from more complex environments with more diverse microbial communities were devel­
oped, visual comparison became insufficient for comparison. Researchers then began to apply 
the techniques of cluster analysis in order to observe which of their sampled communities 
were most similar. Techniques used include principal components analysis (peA) (Ranjard 
et al., 1999), multi-dimensional scaling (MDS) (van Hannen et al., 1999), and hierarchical 
clustering methods based on similarity indices for binary vectors (Sneath and Sokal, 1973). 
Unfortunately, while giving some guidance as to which communities were most similar, none 
of these methods allow researchers to establish conclusive statistical evidence with regard 
to the specific research questions addressed in their studies. Therefore, we concentrate on 
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developing proper statistical methodology for identifying microbial populations that vary 
significantly according to some treatment effect. 

4. Notation 

We use the following notation for our n x d binary data matrix X. 

{ 
1 if the kth microbial population is present in the 

Xi~ jth sample from the ith treatment group. 
o otherwise 

t the number of treatment groups. i = 1, ... ,t 
ni the number of samples in the ith treatment group. j = 1, ... ,ni 

t 

n Lni 
i=1 

d the number of variables (i.e., the dimension) k = 1, ... ,d 

Marginally, we model Xi~ rv Bernoulli(Pik) and we estimate the multivariate dependence 
structure using the within treatment covariance matrix and the between treatment covariance 
matrix for the sample. 

where 

Sw 

S 

Xij the jth sample vector from the ith treatment group. 
1 ni 

Xi. - LXij 
nij=1 
1 t 1 t ni 

x.. - Lnixi. = - LLXij 
n i=1 n i=1 j=1 

5. Variable selection 

One of the most common approaches in multivariate classification problems is to construct 
linear discriminating functions fh' h = 1, ... , q ~ min(t - 1, d), which maximize Ah = It ~:~: subject to the constraint F' Sw F = I q , where fh is the hth column of F and 
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Al ~ A2 ~ ... ~ Aq. That is, AI, A2,"" Aq are the eigenvalues of SW- 1SB and ft,/2, ... '/q 
are the corresponding eigenvectors normalized so that F'SwF = Iq (Hand, 1997). These 
fh can also be used, much like some use principal component loadings in the case where 
groups are not defined a priori, to identify a subset of the variables that explain much of 
the variation in the original d variables associated with the treatment effect. However, in 
high dimensions, and especially when d ::::::: n or d ~ n, Sw -1 can be a poor estimate of the 
inverse of the population covariance, leading to very inefficient classification and variable 
selection (Bai and Saranadasa, 1996). For this reason we propose two alternative methods 
for variable selection in high dimensions. 

5.1 Variable selection using an estimate of Sw -1 SB 

Following a similar approach to that detailed above, we assume that Sw -1 S B can be esti­
mated reasonably by W, where 

W[i,j] = SB[i,j] 

V Sw[i, i]Sw[j, j] 

We then compute the discriminating functions fh' h = 1, ... , q :::; min(t - 1, d) as the 
eigenvectors of W, normalized so that F'SwF = I q . Specifically, we select the subset of 
variables 

M = {Xklihk 1. (Ch,a/2, Ch,l-a/2) for at least one h, h = 1, ... , q} 

where the Ch are constants such that 

P(jhk < Ch,a/2) = P(jhk > Ch,l-a/2) = c 

for each h = 1, ... ,q and the experimentwise type I error is a. This multiple testing correc­
tion is of the type suggested by Westfall and Young (1993). We estimate the Ch empirically 
by permuting the samples vectors Xij for all i and j and computing fh (h = 1, ... , q) for 
each permutation. Permuting in this way, we maintain the same covariance structure (i.e., 
S ) across all permutations. Therefore, we avoid the distortions brought on by using Sw-1 

in high dimensions, while still taking the multivariate dependence structure into account in 
our variable selection criterion. This approach to variable selection attempts to identify a 
subset of variables that give a large degree of separation between the t treatment groups, 
but it is limited in that it will most likely not select two highly correlated variables due to 
the normalization F' Sw F = I q. This restriction is not usually a concern for the analysis of 
microbial community data since it is of more interest to identify a reasonably sized subset of 
the observed microbial populations as candidates for further study (e.g., DNA sequencing, 
genomic analysis, etc.). 

5.2 Variable selection considering each variable individually 

If it is reasonable to assume that S is nearly diagonal, or if we are simply trying to screen 
for "interesting" variables without worrying about selecting several variables that contain 
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similar information, we can employ Pearson's X2 test of homogeneity as our variable selection 
criterion. 

",t (-k -k)2 D2 _ L."i=1 ni Xi. - X .. 
k - x~(l - x~) 

Specifically, we select the set of variables 

M = {XkID~ > Ck,a, k = 1, ... , d} 

where Ck,a is defined as the constant such that under the null hypothesis of homogeneity 
P(D~ > Ck,a) = c for all k and the experimentwise type I error is a. Asymptotically, 

D~ ~ xLI as ni -+ 00 (Kendall and Stuart, 1961). However, due to the small sample size 
and the high dimension of the data, and thus the large number of hypotheses being tested, 
it is unreasonable to assume that Ck,a is the 100(1- a)th percentile of the xLI distribution. 
Instead, we estimate Ck,a empirically by permuting the observations for xk and computing 
D~ for each permutation. This method will identify a subset of the original d variables for 
which there is a statistically significant difference between the observed sample proportions 
of the t different treatment groups, controlling for an experimentwise type I error of a. 

6. Classification 

6.1 Classification using a conditionally independent Bernoulli parameterization 

Upon selecting a subset of variables M, we wish to evaluate the variable selection via a 
classification rule. The probability that a sample X ij is from treatment group 9 can be 
expressed as 

P(G = glXij ) = P(G = gIXi~' Xk E M) 

Similarly, the likelihood of X ij, given that it comes from treatment group 9 is denoted 

P(XijIG = g) = P(Xi~' Xk E MIG = g) 

If we then assume that the X~j' j = 1, ... ,ni and Xk E M are distributed as independent 
Bernoulli(Pik) random variables we can construct a natural classification rule 

(1) 

Bayes theorem and the reasonable assumption that the prior probabilities P(G = g) = t for 
9 = 1, ... ,t results in the classification of Xij into group g* if 

Using this approach we estimate the parameters Pgk, 9 = 1, ... , t and {kl Xk E M} by the 
corresponding sample proportions x;., which are the maximum likelihood estimates of the 
Pgk under the Bernoulli parameterization. 
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6.2 Classification using conditionally independent logistic regressions 

More frequently in statistical modeling of multivariate categorical response data, generalized 
linear models are used. Therefore, in order to compare the results of our classification 
based on the Bernoulli parameterization to a more standard approach, we now fit a logistic 
regression model, again assuming independence among the Xk E M conditional on treatment 
group. 

logit(P(G = gIXij )) = agO + L agkXt + Cgij 

{kIXkEM} 

g = 1 ... t, i = 1 ... t, j = 1 ... ni 

(2) 

Following the same rationale as described for the Bernoulli model (1) we construct classi­
fication rule using Bayes rule and assume a non-informative prior. Here we estimate the 
parameters 0: using iteratively weighted least squares (IWL8). 

7. Application of methodology to microbial community DNA fingerprint data 

7.1 Data 

The described approach for modeling and variable selection was applied to the data from 
Nakatsu et al. (2000), where the objective of the study was to investigate the impact of 
different agronomic treatments on the microbial community structure of corn rhizosphere. 
Corn plants were grown at the Purdue University Agronomy Research Center in disturbed 
(plowed) and undisturbed (no-till) soils with a 24 year history of growth as a mono culture 
crop (corn only) or two crops grown in annual rotation (corn and soybean). Rhizosphere soils 
were sampled during early developmental stages and a community fingerprint was produced 
for each sample by DGGE of PCR amplified 168 rDNA from the soil extracted DNA. While 
there was the potential for very high-dimensional data on the order of d = 10,000, we use 
the d = 84 distinct microbial populations that were identified across all n = 89 samples 
(ni = 23, n2 = n3 = n4 = 22). 

7.2 Variable selection 

We consider both of the proposed variable selection criteria in turn. We first employ the 
variable selection criteria described in section 5.1 and for simplicity take q = t - 1 = 3 and 
a = 0.05. We select only 1 variable, MI = {XI3}, based on Ch,aj2 and Ch,I-aj2, h = 1, ... , q 
estimated from 10,000 permutations of the data. Table 1 displays the proportion of samples 
in each treatment for which the selected microbial population (i.e., variable) was present. 
Clearly, this one binary variable alone will not be sufficient to classify observations into 
4 different treatment groups. However, we observe that xi~ = 1.00, x~~ = x~~ = 0.00 and 
x!~ = 0.14, which indicates that a sample which contains the microbial population associated 
with X I3 is very likely to have come from treatment 1. 

Alternatively, using the variable selection criteria described in section 5.2 and taking a = 
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0.05, a set of 28 variables is selected. 

Table 1 displays the proportion of samples in each treatment for which the selected microbial 
populations (i.e., variables) were present. 

We observe that most of the 28 selected variables have x7. = 0.00 for at least one i = 
1, ... ,4. This result is somewhat expected since this criterion selects variables for which 
there is a statistically significant difference between the observed sample proportions of the 
4 different treatment groups. It is natural then to select variables corresponding to microbial 
populations that are present in a large proportion of the samples from at least one treatment 
and absent in samples from the remaining treatments. 

7.3 Cross-validation 

The two classification rules described in section 6 were employed to validate the subsets of 
variables selected, Ml and M 2 . Table 2 details the results of a cross-validation. That is 
to say, we re-estimate the parameters of the models for each observation we are aiming to 
classify leaving that observation out of the calculations. 

As expected we observe that using M 1 , both classification rules correctly classify all sam­
ples from treatment 1 (i.e., the monoculturejplow treatment), but none of the others. We 
also observe that using M 2 , both classification rules correctly classify more than 85% of 
the samples, with our Bernoulli classification rule outperforming the more standard logistic 
classification rule. 

8. Summary 

In our analysis of the microbial community data we have illustrated the effectiveness of 
our variable selection methodology for relatively high-dimensional multivariate binary data. 
However, our analysis also raises a number of issues. The variable selection method from 
section 5.1 appears to be very restrictive for a number of reasons. First, due to the large 
number of tests (i.e., dq) and the multiple testing correction, the criterion requires that 
values of ihk for any selected variable be in the extreme tails of permutation distribution. 
Secondly, as addressed in section 5.1, due to the normalization F' Sw F = I q , this method 
is not likely to select two highly correlated variables. And finally, by design, the variation 
explained by II is greater than that explained by /2 and so on. Therefore, one can think 
of many ways to adjust the multiple testing correction to make a more reasonable variable 
selection, but no such adjustment would have affected the variable selection made for the 
Nakatsu et al. (2000) data. 

In truly high-dimensional problems (i.e., d ~ 10,000) the property of restrictive variable 
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selection might be advantageous in application. For example, in our application we select 1 
out of 84 variables in the Nakatsu et al. (2000) data using the method of section 5.1 and 28 
out of the 84 variables using the method of section 5.2. In a situation where d = 10,000, 
selecting the same proportion of variables, as in our example, would yield 10S0400 ~ 119 
variables selected by the method of section 5.1 and 2S~~00 ~ 3333 variables selected by the 
method of section 5.2. This extrapolation indicates that for truly high-dimensional data the 
method of section 5.1 might be more appropriate. However, the method of section 5.2 is not 
unreasonable in high dimensions because as the dimension, and consequently the number of 
hypotheses tested, increase the comparisonwise error rate becomes extremely small, resulting 
in a much more restrictive variable selection criterion. 

In addition, we realize that the assumption of conditional independence made, in order 
to construct our simple classification rules, may have a significant effect on our ability to 
evaluate subsets of dependent variables via classification. Nevertheless, this assumption is 
supported by current ecological theory for the microbial communities in rhizosphere soil 
(Coyne, 1999). In situations where one does have dependent subsets of selected variables, 
one might modify the classification rules in order to account for the dependence structure 
among the selected variables. Due to the potential for high-dimensional subsets of selected 
variables, this might best be accomplished using latent variable models to reduce the number 
of estimated parameters. 

Clearly, the framework of our variable selection methodology, is not limited to microbial 
community characterization. The number of sources of high-dimensional data continue to 
increase, especially in the biological sciences where advances in molecular technology and the 
ever increasing interest in functional genomics has led to the production of massive data, some 
of it being binary. Therefore, our methodology could be applied to the problem of variable 
selection for high-dimensional binary data in many such fields, as well for continuous data 
with some modification. 
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Corn grown as monoculture Corn grown in rotation 

M Vl V2 V3 V6 M Vl V2 V3 V6 Vl V2 V3 V6 M M Vl V2 V3 V6 

PLOW NO-TILL PLOW NO-TILL 

Figure 1. Representative characteristic profiles from 4 agronomic treatments are shown 
above. Each vertical column or "lane" represents the profile for one microbial community. 
Within each profile the pattern of illuminated bands reveals distinct fingerprint patterns 
which can be used to distinguish microbial community structure (i.e., which populations of 
microorganisms are present in the community). The tillage practice for each sample (Le., 
plow or no-till) is listed above each block of lanes, or "gel." The rotation practice for each 
sample (Le., mono culture or rotation) is listed below the gels. The growth stage of the 
associated plant for each sample listed above each lane (i.e., VI, V2, V3 and V6) and lane M 
on each gel is a "marker lane" common to all gels to enable between gel comparisons. The 
black arrows denote some bands common to all agronomic treatments and the grey arrows 
denote some bands present only in samples from specific treatments. 
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k -k 
Xl· 

-k 
X2· 

-k 
X3· 

-k 
X4· k -k 

Xl· 
-k 
X2· 

-k 
X3· 

-k 
x4· 

9 0.2609 1.0000 0.3182 0.5455 42 0.0000 0.0000 0.2273 0.0455 
11 0.0000 0.0909 0.0000 0.0000 43 0.0000 0.1364 0.0000 0.3182 
12 0.0000 0.4545 0.0000 0.3636 45 0.0000 0.0000 0.2727 0.0000 

• 13 1.0000 0.0000 0.0000 0.1364 46 0.0870 0.4545 0.1364 0.0000 
14 1.0000 0.6818 1.0000 0.7727 48 0.0435 0.5000 0.0000 0.0000 
16 0.0000 0.0000 0.0000 0.2273 49 0.0000 0.0000 0.0000 0.2727 
19 0.1739 0.4091 0.0000 0.0000 51 0.0000 0.0000 0.0000 0.2273 
27 0.0000 0.0909 0.0000 0.0000 53 0.0000 0.2727 0.0000 0.0455 
32 0.7391 0.3182 0.0000 0.1364 54 0.8696 0.0000 0.6364 0.0000 
34 0.0000 0.0000 0.7727 0.4091 55 0.0000 0.0000 0.0000 0.2727 
36 0.4783 0.1818 0.0000 0.0000 56 0.0000 0.1364 0.0000 0.0000 
39 0.0870 0.3636 0.0000 0.0000 61 0.0000 0.0909 0.0000 0.0000 
40 0.0870 0.1818 0.0000 0.4091 82 0.0000 0.0909 0.0000 0.0000 
41 0.0000 0.0909 0.0000 0.0000 84 0.4783 0.0000 0.6364 0.3182 

Table 1 
Applying the variable selection methodology of section 5.2 to the Nakatsu data we select the 

28 variables displayed above along with the proportion of samples in each treatment for 
which the selected microbial populations (i. e., variables) were present. The single variable 
selected using the methodology of section 5.1 is X 13 , highlighted by a dot to the left of the 

variable number in the table. 
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Treatment 
Monoculture Rotated 

Plow No-Till Plow No-Till 
Subset Rule 1 2 3 4 Total 

Ml Bernoulli 23 0 0 0 23 
Ml Logistic 23 0 0 0 23 
M2 Bernoulli 22 19 22 19 82 
M2 Logistic 22 20 20 15 77 

Observations 23 22 22 22 89 

Table 2 
Number of correctly classified samples in the cross-validations described in section 7.3. Ml 
is the subset of variables selected using the method described in section 5.1 and M2 is the 

subset of variables selected using the method described in section 5.2 
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