1,359 research outputs found

    Oscillatory Flow Bioreactor (OFB) Applied in Enzymatic Hydrolysis at High Solid Loadings

    Get PDF
    Within this study, an enzymatic hydrolysis process using α-cellulosic feedstock was performed in a specially designed plug-flow reactor, referred to as an Oscillatory Flow Bioreactor (OFB). The aims of this approach were to achieve intensification in terms of realising a more energy- and resource-efficient enzymatic hydrolysis, as well as to set the basis for continuous processes in such a reactor. The OFB performance was evaluated for high solid loadings of up to 15 %, and compared to the performance of a Stirred Tank Reactor (STR). Experimental results of the OFB operating at an oscillation frequency of 2 Hz and an oscillation amplitude of 10 mm exhibit better conversion efficiencies (+ 6.7 %) than the STR after 24 h, while requiring only 7 % of the STR power density (W m–3). Therefore, the OFB enables efficient, uniform mixing at lower power densities than STRs for applications with high solid loadings. This work is licensed under a Creative Commons Attribution 4.0 International License

    Implication of a novel multiprotein Dam1p complex in outer kinetochore function

    Get PDF
    Dam1p, Duo1p, and Dad1p can associate with each other physically and are required for both spindle integrity and kinetochore function in budding yeast. Here, we present our purification from yeast extracts of an ∼245 kD complex containing Dam1p, Duo1p, and Dad1p and Spc19p, Spc34p, and the previously uncharacterized proteins Dad2p and Ask1p. This Dam1p complex appears to be regulated through the phosphorylation of multiple subunits with at least one phosphorylation event changing during the cell cycle. We also find that purified Dam1p complex binds directly to microtubules in vitro with an affinity of ∼0.5 μM. To demonstrate that subunits of the Dam1p complex are functionally important for mitosis in vivo, we localized Spc19–green fluorescent protein (GFP), Spc34-GFP, Dad2-GFP, and Ask1-GFP to the mitotic spindle and to kinetochores and generated temperature-sensitive mutants of DAD2 and ASK1. These and other analyses implicate the four newly identified subunits and the Dam1p complex as a whole in outer kinetochore function where they are well positioned to facilitate the association of chromosomes with spindle microtubules

    The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1

    Get PDF
    Cell adhesion and migration are dynamic processes requiring the coordinated action of multiple signaling pathways, but the mechanisms underlying signal integration have remained elusive. Drosophila embryonic dorsal closure (DC) requires both integrin function and c-Jun amino-terminal kinase (JNK) signaling for opposed epithelial sheets to migrate, meet, and suture. Here, we show that PINCH, a protein required for integrin-dependent cell adhesion and actin–membrane anchorage, is present at the leading edge of these migrating epithelia and is required for DC. By analysis of native protein complexes, we identify RSU-1, a regulator of Ras signaling in mammalian cells, as a novel PINCH binding partner that contributes to PINCH stability. Mutation of the gene encoding RSU-1 results in wing blistering in Drosophila, demonstrating its role in integrin-dependent cell adhesion. Genetic interaction analyses reveal that both PINCH and RSU-1 antagonize JNK signaling during DC. Our results suggest that PINCH and RSU-1 contribute to the integration of JNK and integrin functions during Drosophila development

    The role of the chemokine receptor CXCR4 in infection with feline immunodeficiency virus

    Get PDF
    Infection with feline immunodeficiency virus (FIV) leads to the development of a disease state similar to AIDS in man. Recent studies have identified the chemokine receptor CXCR4 as the major receptor for cell culture-adapted strains of FIV, suggesting that FIV and human immunodeficiency virus (HIV) share a common mechanism of infection involving an interaction between the virus and a member of the seven transmembrane domain superfamily of molecules. This article reviews the evidence for the involvement of chemokine receptors in FIV infection and contrasts these findings with similar studies on the primate lentiviruses HIV and SIV (simian immunodeficiency virus)

    Damping of post-impact vibrations

    Get PDF
    During the impact of a body on a plate, flexural waves are set which travel circularly outwards from the point of impact. These waves can be used to determine the properties of the impacting body. For accurate measurements, it is advantageous if both the flexural and compression waves pass the sensor just once without being backscattered or reflected from the boundaries. In this paper, various plate shapes are analysed to evaluate the shape which offers the best damping properties against an impact. Experimental analysis indicated that the reflection of the flexural waves can be halved using a plate with star-shaped 60° edges with a damping layer. The damping properties can be further doubled by using a star-shaped plate with power law edges in combination with a damping layer which is attached to the edges. The work reported here offers a possible solution to get significant damping properties. This is achieved by combining a damping layer with edge shaping against a strong single excitation event. The results demonstrate that it is a promising approach for an impact detection systems which could be equally applicable to acoustic damping applications

    Managing Extreme Heat and Smoke: A Focus Group Study of Vulnerable People in Darwin, Australia

    Get PDF
    Extreme heat and poor air quality arising from landscape fires are an increasing global concern driven by anthropogenic climate change. Previous studies have shown these environmental conditions are associated with negative health outcomes for vulnerable people. Managing and adapting to these conditions in a warming climate can present substantial difficulties, especially in climates already challenging for human habitation. This study was set in the tropical city of Darwin, Australia. We recruited individuals from population groups vulnerable to outdoor hazards: outdoor workers, teachers and carers, and sportspeople, to participate in focus group discussions. We aimed to gain an understanding of the impacts of extreme heat and poor air quality and how individuals perceived and managed these environmental conditions. We identified a number of key themes relating to impacts on health, work and activity, and adaptive behaviors, while identifying gaps in policy and infrastructure that could improve the lives and protect the health of vulnerable people living, working, and playing in this region. In addition, these outcomes potentially provide direction for other regions with similar environmental challenges. Extreme heat and poor air quality place an additional burden on the lives of people in high-risk settings, such as outdoor workers, teachers and carers, and sportspeople

    Influenza Virus Infection of the Murine Uterus: A New Model for Antiviral Immunity in the Female Reproductive Tract

    Full text link
    Secretory IgA (S-IgA) mediates local immunity to influenza virus in the murine upper respiratory tract and may play an important role in local immunity to various microorganisms in the female reproductive tract as well. Although the presence of IgA in cervicovaginal or uterine secretions has been correlated with immunity to a number of pathogens, there has been no direct demonstration of the mediation of uterine antiviral immunity by S-IgA. Influenza virus, although not a normal pathogen of the reproductive tract, was used to develop a model for the investigation of mucosal immunity in the uterus. PR8 (H1N1) influenza virus injected into the ovarian bursa of BALB/c mice grew well, with peak titers between days 3 and 5. Intravenous injection of polymeric IgA anti-influenza virus monoclonal antibody before or 30 min after viral challenge protected mice against viral infection. We believe this work to be the first direct demonstration of S-IgA-mediated antiviral uterine immunity. It provides a model for further investigation of immunity in the female reproductive tract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63226/1/vim.2006.19.613.pd

    Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia - observations and modeling (Lena River Delta, Siberia)

    Get PDF
    © Author(s) 2015. Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009-2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths > 5 m develop continuous stratification in summer for at least 1 month. The modeled vertical heat flux across the bottom sediment tends towards an annual mean of zero, with maximum downward fluxes of about 5 W m-2 in summer and with heat released back into the water column at a rate of less than 1 W m-2 during the ice-covered period. The lakes are shown to be efficient heat absorbers and effectively distribute the heat through mixing. Monthly bottom water temperatures during the ice-free period range up to 15 °C and are therefore higher than the associated monthly air or ground temperatures in the surrounding frozen permafrost landscape. The investigated lakes remain unfrozen at depth, with mean annual lake-bottom temperatures of between 2.7 and 4 °C

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field
    corecore