525 research outputs found

    A spectroscopic study of the globular Cluster NGC 4147

    Get PDF
    Indexación: Web of ScienceWe present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium- and high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H] = -1.84 +/- 0.02 and an alpha-enhancement of +0.38 +/- 0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular, we found an Na-O anticorrelation and Na-Al correlation. The cluster contains only similar to 15 per cent of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass-loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. An antirelation between the light s-process element Y and Na may also be present.https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw114

    No evidence of dark matter in the solar neighborhood

    Full text link
    We measured the surface mass density of the Galactic disk at the solar position, up to 4 kpc from the plane,by means of the kinematics of ~400 thick disk stars. The results match the expectations for the visible mass only, and no dark matter is detected in the volume under analysis. The current models of dark matter halo are excluded with a significance higher than 5sigma, unless a highly prolate halo is assumed, very atypical in cold dark matter simulations. The resulting lack of dark matter at the solar position challenges the current models.Comment: Proceeding of the first binational Sochias-AAA meeting, held in San Juan, Argentin

    Weighing the galactic disc using the Jeans equation: lessons from simulations

    Get PDF
    Using three-dimensional stellar kinematic data from simulated galaxies, we examine the efficacy of a Jeans equation analysis in reconstructing the total disk surface density, including the dark matter, at the ‘Solar’ radius. Our simulation data set includes galaxies formed in a cosmological context using state-of-the-art high-resolution cosmological zoom simulations, and other idealized models. The cosmologically formed galaxies have been demonstrated to lie on many of the observed scaling relations for late-type spirals, and thus offer an interesting surrogate for real galaxies with the obvious advantage that all the kinematical data are known perfectly. We show that the vertical velocity dispersion is typically the dominant kinematic quantity in the analysis, and that the traditional method of using only the vertical force is reasonably effective at low heights above the disk plane. At higher heights the inclusion of the radial force becomes increasingly important. We also show that the method is sensitive to uncertainties in the measured disk parameters, particularly the scalelengths of the assumed double exponential density distribution, and the scalelength of the radial velocity dispersion. In addition, we show that disk structure and low number statistics can lead to significant errors in the calculated surface densities. Finally, we examine the implications of our results for previous studies of this sort, suggesting that more accurate measurements of the scalelengths may help reconcile conflicting estimates of the local dark matter density in the literature

    Abundance ratios of red giants in low mass ultra faint dwarf spheroidal galaxies

    Get PDF
    Low mass dwarf spheroidal galaxies are key objects for our understanding of the chemical evolution of the pristine Universe and the Local Group of galaxies. Abundance ratios in stars of these objects can be used to better understand their star formation and chemical evolution. We report on the analysis of a sample of 11 stars belonging to 5 different ultra faint dwarf spheroidal galaxies (UfDSph) based on X-Shooter spectra obtained at the VLT. Medium resolution spectra have been used to determine the detailed chemical composition of their atmosphere. We performed a standard 1D LTE analysis to compute the abundances. Considering all the stars as representative of the same population of low mass galaxies, we found that the [alpha/Fe] ratios vs [Fe/H] decreases as the metallicity of the star increases in a way similar to what is found for the population of stars belonging to dwarf spheroidal galaxies. The main difference is that the solar [alpha/Fe] is reached at a much lower metallicity for the UfDSph than the dwarf spheroidal galaxies. We report for the first time the abundance of strontium in CVnI. The star we analyzed in this galaxy has a very high [Sr/Fe] and a very low upper limit of barium which makes it a star with an exceptionally high [Sr/Ba] ratio. Our results seem to indicate that the galaxies which have produced the bulk of their stars before the reionization (fossil galaxies) have lower [X/Fe] ratios at a given metallicity than the galaxies that have experienced a discontinuity in their star formation rate (quenching).Comment: 22 pages, 12 figures, submitted to A&

    Spectroscopy of horizontal branch stars in Omega Centauri

    Full text link
    We analyze the reddening, surface helium abundance and mass of 115 horizontal branch (HB) and blue hook (BH) stars in OmegaCentauri, spanning the HB from the blue edge of the instability strip to Teff~50000K. The mean cluster reddening is E(B-V)=0.115+-0.004, in good agreement with previous estimates, but we evidence a pattern of differential reddening in the cluster area. The stars in the western half are more reddened than in the southwest quadrant by 0.03-0.04 magnitudes. We find that the helium abundances measured on low-resolution spectra are systematically lower by ~0.25 dex than the measurements based on higher resolution. No difference in helium abundance is detected between OmegaCentauri and three comparison clusters, and the stars in the range 11500-20000K follow a trend with temperature, which probably reflects a variable efficiency of the diffusion processes. There is mild evidence that two families of extreme HB (EHB) stars (Teff>20000K) could exist, as observed in the field, with ~15% of the objects being helium depleted by a factor of ten with respect to the main population. The distribution of helium abundance above 30000K is bimodal, but we detect a fraction of He-poor objects lower than previous investigations. The observations are consistent with these being stars evolving off the HB. Their spatial distribution is not uniform, but this asymmetric distribution is only marginally significative. We also find that EHB stars with anomalously high spectroscopic mass could be present in OmegaCentauri, as previously found in other clusters. The derived temperature-color relation reveals that stars hotter than 11000K are fainter than the expectations of the canonical models in the U band, while no anomaly is detected in B and V. This behavior, not observed in NGC6752, is a new peculiarity of OmegaCentauri HB stars.Comment: Accepted for publication in A&

    Ghosts of Milky Way's past: the globular cluster ESO 37-1 (E 3)

    Get PDF
    Context. In the Milky Way, most globular clusters are highly conspicuous objects that were found centuries ago. However, a few dozen of them are faint, sparsely populated systems that were identified largely during the second half of the past century. One of the faintest is ESO 37-1 (E 3) and as such it remains poorly studied, with no spectroscopic observations published so far, although it was discovered in 1976. Aims. We investigate the globular cluster E 3 in an attempt to better constrain its fundamental parameters. Spectroscopy of stars in the field of E 3 is shown here for the first time. Methods. Deep, precise VI CCD photometry of E 3 down to V=26 mag is presented and analysed. Low-resolution, medium signal-to-noise ratio spectra of nine candidate members are studied to derive radial velocity and metallicity. Proper motions from the UCAC4 catalogue are used to explore the kinematics of the bright members of E 3. Results. Isochrone fitting indicates that E 3 is probably very old, with an age of about 13 Gyr; its distance from the Sun is nearly 10 kpc. It is also somewhat metal rich with [Fe/H]=-0.7. Regarding its kinematics, our tentative estimate for the proper motions is (-7.0+/-0.8, 3.5+/-0.3) mas/yr (or a tangential velocity of 382+/-79 km/s) and for the radial velocity is 45+/-5 km/s, in the solar rest frame. Conclusions. E 3 is one of the most intriguing globular clusters in the Galaxy. Having an old age and being metal rich is clearly a peculiar combination, only seen in a handful of objects like the far more conspicuous NGC 104 (47 Tucanae). In addition, its low luminosity and sparse population make it a unique template for the study of the final evolutionary phases in the life of a star cluster. Unfortunately, E 3 is among the most elusive and challenging known globular clusters because field contamination severely hampers spectroscopic studies.Comment: 7 pages, 6+1 figures, 2 tables. Accepted for publication in Astronomy and Astrophysics. Minor change

    Chemical analysis of NGC 6528: one of the most metal-rich bulge globular cluster

    Full text link
    The Bulge Globular Clusters (GCs) are key tracers of this central ancient component of our Galaxy. It is essential to understand their formation and evolution to study that of the bulge, as well as their relationship with the other Galactic GC systems (halo and disk GCs). Our main goals are to obtain detailed abundances for a sample of seven red giant members of NGC 6528 in order to characterize its chemical composition and study the relationship of this GC with the bulge, and with other bulge, halo and disk GCs. Moreover, we analyze this cluster′'s behavior associated with the Multiple Populations (MPs) phenomenon. We obtained the stellar parameters and chemical abundances of light elements (Na, Al), iron-peak elements (V, Cr, Mn, Fe, Co, Ni, Cu), {\alpha}-elements (O, Mg, Si, Ca, Ti) and heavy elements (Zr, Ba, Eu) in seven red giant members of NGC 6528 using high resolution spectroscopy from FLAMES-UVES. We obtained in six stars of our sample a mean iron content of [Fe/H]=-0.14+/-0.03 dex, in good agreement with other studies. We found no significant internal iron spread. We detected one candidate variable star, which was excluded from the mean in iron content, we derived a metallicity in this star of [Fe/H]=-0.55+/-0.04 dex. Moreover, we found no extended O-Na anticorrelation but instead only an intrinsic Na spread. In addition, NGC 6528 does not exhibit a Mg-Al anticorrelation, and no significant spread in either Mg or Al. The {\alpha} and iron-peak elements show good agreement with the bulge field star trend. The heavy elements are slightly dominated by the r-process. The chemical analysis suggests an origin and evolution similar to that of typical old Bulge field stars. Finally, we find remarkable agreement in the chemical patterns of NGC 6528 and another bulge GC, NGC 6553, suggesting a similar origin and evolution.Comment: Accepted for publication in A&A. 12 pages, 13 figures, 4 table

    A hot horizontal branch star with a close K-type main-sequence companion

    Get PDF
    Dynamical interactions in binary systems are thought to play a major role in the formation of extreme horizontal branch stars (EHBs) in the Galactic field. However, it is still unclear if the same mechanisms are at work in globular clusters, where EHBs are predominantly single stars. Here we report on the discovery of a unique close binary system (period ~1.61 days) in the globular cluster NGC6752, comprising an EHB and a main-sequence companion of 0.63+-0.05 Msun. Such a system has no counterpart among nearly two hundred known EHB binaries in the Galactic field. Its discovery suggests that either field studies are incomplete, missing this type of systems possibly because of selection effects, or that a particular EHB formation mechanism is active in clusters but not in the field
    • …
    corecore