1,975 research outputs found

    Finite hadronization time and unitarity in quark recombination model

    Full text link
    The effect of finite hadronization time is considered in the recombination model, and it is shown that the hadron multiplicity turns out to be proportional to the initial quark density and unitarity is conserved in the model. The baryon to meson ratio increases rapidly with the initial quark density due to competition among different channels.Comment: 4 pages in RevTeX, 3 eps figures, to appear in J. Phys.G as a lette

    Fluid dynamical equations and transport coefficients of relativistic gases with non-extensive statistics

    Full text link
    We derive equations for fluid dynamics from a non-extensive Boltzmann transport equation consistent with Tsallis' non-extensive entropy formula. We evaluate transport coefficients employing the relaxation time approximation and investigate non-extensive effects in leading order dissipative phenomena at relativistic energies, like heat conductivity, shear and bulk viscosity.Comment: 9 pages, 5 figures. Some small corrections in the text and in the first figure caption; accepted for publication in Physical Review

    Particle correlations at RHIC from parton coalescence dynamics -- first results

    Full text link
    A new dynamical approach that combines covariant parton transport theory with hadronization channels via parton coalescence and fragmentation is applied to Au+Au at RHIC. Basic consequences of the simple coalescence formulas, such as elliptic flow scaling and enhanced proton/pion ratio, turn out to be rather sensitive to the spacetime aspects of coalescence dynamics.Comment: Contribution to Quark Matter 2004 (January 11-17, 2004, Oakland, CA). 4 pages, 2 EPS figs, IOP style fil

    Decoherence of molecular wave packets in an anharmonic potential

    Get PDF
    The time evolution of anharmonic molecular wave packets is investigated under the influence of the environment consisting of harmonic oscillators. These oscillators represent photon or phonon modes and assumed to be in thermal equilibrium. Our model explicitly incorporates the fact that in the case of a nonequidistant spectrum the rates of the environment induced transitions are different for each transition. The nonunitary time evolution is visualized by the aid of the Wigner function related to the vibrational state of the molecule. The time scale of decoherence is much shorter than that of dissipation, and gives rise to states which are mixtures of localized states along the phase space orbit of the corresponding classical particle. This behavior is to a large extent independent of the coupling strength, the temperature of the environment and also of the initial state.Comment: 7 pages, 4 figure

    Relativistic shock waves in viscous gluon matter

    Full text link
    We solve the relativistic Riemann problem in viscous gluon matter employing a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s\eta/s from zero to infinity. We show that an η/s\eta/s ratio larger than 0.2 prevents the development of well-defined shock waves on timescales typical for ultrarelativistic heavy-ion collisions. Comparisons with viscous hydrodynamic calculations confirm our findings.Comment: Version as published in PRL 103, 032301 (2009). 4 pages, 4 figure

    Mechanochemical synthesis of crystalline and amorphous digold(i) helicates exhibiting anion- and phase-switchable luminescence properties

    Get PDF
    For the first time, mechanochemical synthesis has been used for the preparation of crystalline and amorphous dinuclear gold(i) helicates, [Au2L2](X)2 (L = xantphos; X = CF3SO3, SCN, BF4 and PF6), that show anion- and phase-switchable luminescence properties. This solid-state approach provides strategies for developing switchable luminescent materials

    Pion Interferometry for a Granular Source of Quark-Gluon Plasma Droplets

    Full text link
    We examine the two-pion interferometry for a granular source of quark-gluon plasma droplets. The evolution of the droplets is described by relativistic hydrodynamics with an equation of state suggested by lattice gauge results. Pions are assumed to be emitted thermally from the droplets at the freeze-out configuration characterized by a freeze-out temperature TfT_f. We find that the HBT radius RoutR_{out} decreases if the initial size of the droplets decreases. On the other hand, RsideR_{side} depends on the droplet spatial distribution and is relatively independent of the droplet size. It increases with an increase in the width of the spatial distribution and the collective-expansion velocity of the droplets. As a result, the value of RoutR_{out} can lie close to RsideR_{side} for a granular quark-gluon plasma source. The granular model of the emitting source may provide an explanation to the RHIC HBT puzzle and may lead to a new insight into the dynamics of the quark-gluon plasma phase transition.Comment: 5 pages, 4 figure

    On three-rowed Chomp

    Get PDF
    Chomp is a 50 year-old game played on a partially ordered set P. It has been in the center of interest of several mathematicians since then. Even when P is simply a 3 Ă— n lattice, we have almost no information about the winning strategy. In this paper we present a new approach and a cubic algorithm for computing the winning positions for this case. We also prove that from the initial positions there are infinitely many winning moves in the third row
    • …
    corecore