94 research outputs found

    Apatite Formation Abilities and Mechanical Properties of Hydroxyethylmethacrylate-based Organic-inorganic Hybrids Incorporated with Sulfonic Groups and Calcium Ions

    Get PDF
    Apatite formation in the living body is an essential requirement for artificial materials to exhibit bone-bonding bioactivity. It has been recently revealed that sulfonic groups trigger apatite nucleation in a body environment. Organic–inorganic hybrids consisting of organic polymers and the sulfonic groups are therefore expected to be useful for preparation of novel bone-repairing materials exhibiting flexibility as well as bioactivity. In the present study, organic–inorganic hybrids were prepared from hydroxyethylmethacrylate (HEMA) in the presence of vinylsulfonic acid sodium salt (VSAS) and calcium chloride (CaCl2). The bioactivities of the hybrids were assessed in vitro by examining the apatite formation in simulated body fluid (SBF, Kokubo solution). The hybrids deposited on the apatite after soaking in SBF within 7 days. Tensile strength measurements showed a tendency to increase with increases in VSAS and CaCl2 content. It was assumed that this phenomenon was attributed to the formation of cross-linking in the hybrids

    Apatite Formation Abilities and Mechanical Properties of Hydroxyethylmethacrylate-based Organic-inorganic Hybrids Incorporated with Sulfonic Groups and Calcium Ions

    Get PDF
    Apatite formation in the living body is an essential requirement for artificial materials to exhibit bone-bonding bioactivity. It has been recently revealed that sulfonic groups trigger apatite nucleation in a body environment. Organic–inorganic hybrids consisting of organic polymers and the sulfonic groups are therefore expected to be useful for preparation of novel bone-repairing materials exhibiting flexibility as well as bioactivity. In the present study, organic–inorganic hybrids were prepared from hydroxyethylmethacrylate (HEMA) in the presence of vinylsulfonic acid sodium salt (VSAS) and calcium chloride (CaCl2). The bioactivities of the hybrids were assessed in vitro by examining the apatite formation in simulated body fluid (SBF, Kokubo solution). The hybrids deposited on the apatite after soaking in SBF within 7 days. Tensile strength measurements showed a tendency to increase with increases in VSAS and CaCl2 content. It was assumed that this phenomenon was attributed to the formation of cross-linking in the hybrids

    Andreev Reflection in Ferromagnet/Superconductor/Ferromagnet Double Junction Systems

    Full text link
    We present a theory of Andreev reflection in a ferromagnet/superconductor/ferromagnet double junction system. The spin polarized quasiparticles penetrate to the superconductor in the range of penetration depth from the interface by the Andreev reflection. When the thickness of the superconductor is comparable to or smaller than the penetration depth, the spin polarized quasiparticles pass through the superconductor and therefore the electric current depends on the relative orientation of magnetizations of the ferromagnets. The dependences of the magnetoresistance on the thickness of the superconductor, temperature, the exchange field of the ferromagnets and the height of the interfacial barriers are analyzed. Our theory explains recent experimental results well.Comment: 8 pages, 9 figures, submitted to Phys. Rev.

    Theoretical Aspects of Charge Ordering in Molecular Conductors

    Full text link
    Theoretical studies on charge ordering phenomena in quarter-filled molecular (organic) conductors are reviewed. Extended Hubbard models including not only the on-site but also the inter-site Coulomb repulsion are constructed in a straightforward way from the crystal structures, which serve for individual study on each material as well as for their systematic understandings. In general the inter-site Coulomb interaction stabilizes Wigner crystal-type charge ordered states, where the charge localizes in an arranged manner avoiding each other, and can drive the system insulating. The variety in the lattice structures, represented by anisotropic networks in not only the electron hopping but also in the inter-site Coulomb repulsion, brings about diverse problems in low-dimensional strongly correlated systems. Competitions and/or co-existences between the charge ordered state and other states are discussed, such as metal, superconductor, and the dimer-type Mott insulating state which is another typical insulating state in molecular conductors. Interplay with magnetism, e.g., antiferromagnetic state and spin gapped state for example due to the spin-Peierls transition, is considered as well. Distinct situations are pointed out: influences of the coupling to the lattice degree of freedom and effects of geometrical frustration which exists in many molecular crystals. Some related topics, such as charge order in transition metal oxides and its role in new molecular conductors, are briefly remarked.Comment: 21 pages, 19 figures, to be published in J. Phys. Soc. Jpn. special issue on "Organic Conductors"; figs. 4 and 11 replaced with smaller sized fil

    Angular analysis of B0K(892)0+B^0 \to K^\ast(892)^0 \ell^+ \ell^-

    Full text link
    We present a measurement of angular observables, P4P_4', P5P_5', P6P_6', P8P_8', in the decay B0K(892)0+B^0 \to K^\ast(892)^0 \ell^+ \ell^-, where +\ell^+\ell^- is either e+ee^+e^- or μ+μ\mu^+\mu^-. The analysis is performed on a data sample corresponding to an integrated luminosity of 711 fb1711~\mathrm{fb}^{-1} containing 772×106772\times 10^{6} BBˉB\bar B pairs, collected at the Υ(4S)\Upsilon(4S) resonance with the Belle detector at the asymmetric-energy e+ee^+e^- collider KEKB. Four angular observables, P4,5,6,8P_{4,5,6,8}' are extracted in five bins of the invariant mass squared of the lepton system, q2q^2. We compare our results for P4,5,6,8P_{4,5,6,8}' with Standard Model predictions including the q2q^2 region in which the LHCb collaboration reported the so-called P5P_5' anomaly.Comment: Conference paper for LHC Ski 2016. SM prediction for P6P_{6}' corrected and reference for arXiv:1207.2753 adde

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
    corecore