1,429 research outputs found

    Paleoceanography of the eastern equatorial Pacific during the Neogene: Synthesis of Leg 138 drilling results

    Get PDF
    The primary objective of Leg 138 was to provide detailed information about the ocean\u27s response to global climate change during the Neogene. Two north-south transects were drilled (95° and 110°W) within the region of equatorial divergence-driven upwelling (and thus high accumulation rates and resolution) and spanning the major equatorial ocean current boundaries (and thus recording a high-amplitude signal of the response of the sediment to climatically and/or tectonically driven changes in ocean circulation). The Neogene is marked by a number of well-known climatic and tectonic events (the closing of the Isthmus of Panama, the onset of North Atlantic Deep Water (NADW), the rapid uplift of the Himalayas, the major intensification of Northern Hemisphere glaciation), and the response of the ocean before and after these events was a key focus of Leg 138 drilling. To address these objectives at the highest resolution possible, the Leg 138 scientific staff developed a number of new shipboard strategies and analytical procedures. These included the real-time analysis of the near-continuous gamma ray attenuation porosity evaluator (GRAPE) and susceptibility profiles produced by the multisensor track (MST) on unsplit cores to monitor core recovery and, if necessary, to modify the drilling strategy to ensure proper offset of coring gaps; the collection of near-continuous color reflectance data on split cores; the logging of the first hole drilled at each site to optimize drilling and sampling strategies for subsequent holes; and the use of multiple continuous records to unambiguously construct complete composite sections for each site. The complete, continuous records provided by the GRAPE (with a temporal resolution of often yr), in conjunction with an excellent microfossil stratigraphy and often excellent magnetostratigraphy, allowed for astronomical tuning of the stratigraphic record and resulted in a set of internally consistent, high-resolution age models that provide a secure, absolute time scale for the past 6 m.y. For the period before 6 m.y., the absolute time calibration is less secure, but it is still better than any previously offered. The high-resolution stratigraphic framework of Leg 138 provided new insight into the previously ambiguous tectonic history of the region. By assuming that maximum sedimentation rates along the north-south transect would be expected at the equator, the Leg 138 stratigraphy supports the 1985 work of Cox and Engerbretson, which calls for two different poles of rotation of the Pacific Plate during the interval 0-20 Ma. The Leg 138 plate reconstructions also support several previously hypothesized ridge crest jumps and a slowing of the absolute motion of the Nazca Plate at about 5 Ma. Although Leg 138 data that predates about 13 Ma is limited, the impression that one can gain from these data is that the eastern equatorial Pacific was characterized by relatively high carbonate concentrations and accumulation rates before about 11 Ma. This pattern was interrupted occasionally by rapid massive outpourings of near-monospecific laminated diatom oozes that probably represent the formation of massive mats along strong surface-water fronts. The laminated diatom oozes (LDO) continue to be present in the Leg 138 record (many of them being expressed as seismic reflections) until about 4.4 Ma. Carbonate accumulation rates begin to decline slowly between 11 and 9.8 Ma, when, at about 9.5 Ma, a near-complete loss of carbonate (the carbonate crash ) takes place everywhere in the Leg 138 region (and beyond), except at the westernmost sites close to the equator. The carbonate crash was a time of fundamental change for the eastern equatorial Pacific, and perhaps for most of the ocean basins. Unlike many of the carbonate variations that precede and postdate it, this crash represents a major dissolution event whose effects can be traced seismically in the central and western Pacific. The changes in bottom-water chemistry associated with this event (or series of events) appear to be related to the early phases of the closing of the Panama Gateway. The role of NADW initiation and intensification for controlling carbonate accumulation in the eastern equatorial Pacific is still not resolved; however, ocean modeling demonstrates that the closing of the Panama Gateway may also have a direct influence on NADW production. Therefore, the effects of changes in the Panama Gateway sill depth and the production of NADW may be manifested in the history of eastern equatorial Pacific sedimentation. The carbonate crash was followed by a recovery of the carbonate system (except in the Guatemala and Peru basins, which never recovered) that led up to the late Miocene/early Pliocene sedimentation rate maxima, during which equatorial sedimentation rates are as much as five times greater than those of the late Pliocene or Pleistocene. Examination of modern productivity/preser vation relationships implies that the sedimentation rate maximum was the result of enhanced productivity. The distribution of eolian sediments and isotopic gradients, along with an analysis of the modes of variance in carbonate deposition over the last 6 m.y., suggest a more northerly position of the Intertropical Convergence Zone (ITCZ), a stronger north-south gradient across the equator, and a more zonal circulation focused along the equator during the time of maximum sedimentation. The mechanisms suggested for these changes in circulation patterns include the response of the eastern equatorial Pacific to the closing of the Isthmus of Panama, as well as a global increase in the flux of Ca and Si into the oceans, a possible response to evolution of the Himalayas and the Tibetan Plateau. In an effort to understand the response of the climate system to external (orbital) forcing, 6-m.y.-long, continuous records of carbonate (derived from GRAPE), δ 1 8 and insolation were analyzed and compared. Evolutionary spectral calculations of the variance and coherence among these records indicate that the insolation record is dominated by precessional frequencies, but that the relative importance of the two precessional frequencies has changed significantly over the last 6 m.y. In general, precessional forcing is not found in the carbonate or isotopic records. In the tilt band, however, a linear response is present between solar forcing and the carbonate and isotope records over some intervals. The carbonate record appears to be tightly coupled to the tilt component of insolation before about 1.9 Ma; however, the isotope record does not begin to show sensitivity to orbital tilt until about 4.5 Ma, the time of significant changes in sedimentation patterns in the eastern equatorial Pacific. Only during the last 500,000 yr do all frequencies respond in a similar manner; we also see a marked increase in the response of the isotopic record to orbital forcing (including 100,000- and 400,000-yr periods)

    1995, Spatial and temporal variability of late Neogene equatorial Pacific carbonate

    Get PDF
    High-resolution, continuous records of GRAPE wet bulk density (a carbonate proxy) from Ocean Drilling Program Leg 138 provide one the opportunity for a detailed study of eastern equatorial Pacific Ocean carbonate sedimentation during the last 6 m.y. The transect of sites drilled spans both latitude and longitude in the eastern equatorial Pacific from 90° to 110°W and from 5°S to 10°N. Two modes of variability are resolved through the use of Empirical Orthogonal Function (EOF) analysis. In the presence of large tectonic and climatic boundary condition changes over the last 6 m.y., the dominant mode of spatial variability in carbonate sedimentation is remarkably constant. The first mode accounts for over 50% of the variance in the data, and is consistent with forcing by equatorial divergence. This mode characterizes both carbonate concentration and carbonate mass accumulation rate time series. Variability in the first mode is highly coherent with insolation, indicating a strong linear relationship between equatorial Pacific car bonate sedimentation and Milankovitch variability. Frequency domain analysis indicates that the coupling to equatorial divergence in carbonate sedimentation is strongest in the precession band (19-23 k.y.) and weakest though present at lower frequencies. The second mode of variability has a consistent spatial pattern of east-west asymmetry over the past 4 m.y. only; prior to 4 Ma, a different mode of spatial variability may have been present, possibly suggesting influence by closure of the Isthmus of Panama or other tectonic changes. The second mode of variability may indicate influence by CaCO3 dissolution. The second mode of variability is not highly coherent with insolation. Comparison of the modes of carbonate variability to a 4 m.y. record of benthic δ 1 8 indicates that although overall correlation between carbonate and δ 1 8 is low, both modes of variability in carbonate sedimentation are coherent with δ 1 8 changes at some frequencies. The first mode of carbonate variability is coherent with Sites 846/849 δ 1 8 at the dominant insolation periods, and the second mode is coherent at 100 k.y. during the last 2 m.y. The coherence between carbonate sedimentation and δ 1 8 in both EOF modes suggests that multiple uncorrelated modes of variability operated within the climate system during the late Neogene

    Contrasting local and long-range-transported warm ice-nucleating particles during an atmospheric river in coastal California, USA

    Get PDF
    Ice-nucleating particles (INPs) have been found to influence the amount, phase and efficiency of precipitation from winter storms, including atmospheric rivers.Warm INPs, those that initiate freezing at temperatures warmer than -10°C, are thought to be particularly impactful because they can create primary ice in mixed-phase clouds, enhancing precipitation efficiency. The dominant sources of warm INPs during atmospheric rivers, the role of meteorology in modulating transport and injection of warm INPs into atmospheric river clouds, and the impact of warm INPs on mixed-phase cloud properties are not well-understood. In this case study, time-resolved precipitation samples were collected during an atmospheric river in northern California, USA, during winter 2016. Precipitation samples were collected at two sites, one coastal and one inland, which are separated by about 35 km. The sites are sufficiently close that air mass sources during this storm were almost identical, but the inland site was exposed to terrestrial sources of warm INPs while the coastal site was not. Warm INPs were more numerous in precipitation at the inland site by an order of magnitude. Using FLEXPART (FLEXible PARTicle dispersion model) dispersion modeling and radar-derived cloud vertical structure, we detected influence from terrestrial INP sources at the inland site but did not find clear evidence of marine warm INPs at either site.We episodically detected warm INPs from long-range-transported sources at both sites. By extending the FLEXPART modeling using a meteorological reanalysis, we demonstrate that long-range-transported warm INPs were observed only when the upper tropospheric jet provided transport to cloud tops. Using radar-derived hydrometeor classifications, we demonstrate that hydrometeors over the terrestrially influenced inland site were more likely to be in the ice phase for cloud temperatures between 0 and -10°C. We thus conclude that terrestrial and long-rangetransported aerosol were important sources of warm INPs during this atmospheric river. Meteorological details such as transport mechanism and cloud structure were important in determining (i) warm INP source and injection temperature and (ii) ultimately the impact of warm INPs on mixed-phase cloud properties

    Synorogenic evolution of large-scale drainage patterns: Isotope paleohydrology of sequential Laramide basins

    Get PDF
    In the past decade, we and others have compiled an extensive dataset of O, C and Sr isotope stratigraphies from sedimentary basins throughout the Paleogene North American Cordillera. In this study, we present new results from the Piceance Creek Basin of northwest Colorado, which record the evolving hydrology of the Eocene Green River Lake system. We then place the new data in the context of the broader Cordilleran dataset and summarize implications for understanding the synorogenic evolution of large-scale drainage patterns. The combined data reflect (1) a period of throughgoing foreland rivers heading in the Sevier fold-and-thrust belt and flowing east, (2) ponding of freshwater lakes in the foredeep as Laramide uplifts blocked drainage, (3) hydrologic closure that led to both intensive evaporation in the terminal sink of the Piceance Creek Basin and integration of catchments over length-scales \u3e1000 km, (4) infilling of basin accommodation by southward migrating magmatism in distal catchments, leading to the freshening and demise of intraforeland lakes that also stepped south over time

    Terrigenous Fe input and biogenic sedimentation in the glacial and interglacial equatorial Pacific Ocean

    Get PDF
    Many ocean regions important to the global carbon budget, including the equatorial Pacific Ocean, have low chlorophyll concentrations despite high levels of conventional nutrients. Iron may instead be the limiting nutrient, and elevated input of terrigenous Fe during windy glacial episodes has been hypothesized to stimulate oceanic productivity through time and thus regulate the oceanic and atmospheric CO2 balance. To test whether particulate Fe input is related to the accumulation of biogenic matter in one important low chlorophyll‐high nutrient area, that is, the equatorial Pacific Ocean, we present results from a suite of sediment cores that collectively record biogenic deposition through the last six glacial‐interglacial cycles (∼600,000 years). Our data set includes new chemical data on total Fe, terrigenous, and biogenic components in three cores as well as previously published mineralogic records of eolian input to the region. Chemical, spectral, and stratigraphic analysis indicates that (1) terrigenous input to the region shows no consistent pattern of either glacial or interglacial maxima, (2) the accumulation of particulate Fe is closely related to the accumulation of terrigenous matter (linear r2 = 0.81–0.98), (3) there are no coherent spectral relationships between Fe input and glacial periodicity (i.e., δ18O) in any of the orbital frequency bands, (4) the linear and cross‐spectral correlations between Fe or eolian input and CaCO3 concentration are most commonly the strongest observed relationships between Fe and any biogenic component, yet indicate a largely inverse pattern, with higher Fe being associated with low CaCO3, (5) there is no consistent linear r2 correlation or spectral coherence between the accumulation of Fe and that of CaCO3, Corg, or opal. Thus in total there is no relationship between terrigenous Fe input and sedimentary sequestering of carbon. Additionally, although we cannot specifically address the potential for changes in solubility of the terrigenous fraction that may be driven by a terrigenous compositional change, the Fe/Ti ratio (which monitors first‐order mineralogic changes) records only slight variations that also are linearly and spectrally unrelated to glacial periodicity, the bulk Fe flux, and the accumulation of any biogenic component. Finally, we find that the paleoceanographic flux of Fe is several order‐of‐magnitudes larger than modern observations of eolian Fe input, suggesting that the long‐term importance of Fe input by dust storms (which deliver Fe on the order of the sedimentary burial) may be underestimated. The removal of particulate terrigenous Fe from the recently discovered source within the Equatorial Undercurrent, however, remains unquantified and may also prove significant

    Aridification of Central Asia and uplift of the Altai and Hangay mountains, Mongolia: stable isotope evidence

    Get PDF
    Central Asia has become increasingly arid during the Cenozoic, though the mechanisms behind this aridification remain unresolved. Much attention has focused on the influence and uplift history of the Tibetan Plateau. However, the role of ranges linked to India-Asia convergence but well north of the Plateau—including the Altai, Sayan, and Hangay—in creating the arid climate of Central Asia is poorly understood. Today, these ranges create a prominent rain shadow, effectively separating the boreal forest to the north from the deserts of Central Asia. To explore the role of these mountains in modifying climate since the late Eocene, we measured carbon and oxygen stable isotopes in paleosol carbonates from three basins along a 650 km long transect at the northern edge of the Gobi Desert in Mongolia and in the lee of the Altai and Hangay mountains. We combine these data with modern air-parcel back-trajectory modeling to understand regional moisture transport pathways at each basin. In all basins, δ¹³C increases, with the largest increase in western Mongolia. The first δ¹³C increase occurs in central and southwestern Mongolia in the Oligocene. δ¹³C again increases from the upper Miocene to the Quaternary in western and southwestern Mongolia. We use a 1-D soil diffusion model to demonstrate that these δ¹³C increases are linked to declines in soil respiration driven by dramatic increases in aridity. Using modern-day empirical relations between mean annual precipitation and soil respiration, we estimate that precipitation has likely more than halved over the Neogene. Given the importance of the Hangay and Altai in steering moisture in Mongolia, we attribute these changes to differential surface uplift of the Hangay and Altai. Surface uplift in the Hangay began by the early Oligocene, blocking Siberian moisture and aridifying the northern Gobi. In contrast, surface uplift of the Altai began in the late Miocene, blocking moisture from reaching western Mongolia. Thus, the northern Gobi became increasingly arid east to west since the late Eocene, likely driven by orographic development in the Hangay during the Oligocene and the Altai in the late Miocene through Pliocene

    Near collapse of the meridional SST gradient in the eastern equatorial Pacific during Heinrich Stadial 1

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 28 (2013): 663–674, doi:10.1002/2013PA002499.Sea surface temperatures (SST) and inorganic continental input over the last 25,000 years (25 ka) are reconstructed in the far eastern equatorial Pacific (EEP) based on three cores stretching from the equatorial front (~0.01°N, ME0005-24JC) into the cold tongue region (~3.6°S; TR163-31P and V19-30). We revisit previously published alkenone-derived SST records for these sites and present a revised chronology for V19-30. Inorganic continental input is quantified at all three sites based on 230Th-normalized fluxes of the long-lived continental isotope thorium-232 and interpreted to be largely dust. Our data show a very weak meridional (cross-equatorial) SST gradient during Heinrich Stadial 1 (HS1, 18–15 ka B.P.) and high dust input along with peak export production at and north of the equator. These findings are corroborated by an Earth system model experiment for HS1 that simulates intensified northeasterly trade winds in the EEP, stronger equatorial upwelling, and surface cooling. Furthermore, the related southward shift of the Intertropical Convergence Zone (ITCZ) during HS1 is also indicative of drier conditions in the typical source regions for dust.This work was supported by grants from the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), the Canadian Institute for Advanced Research (CIFAR), the Natural Sciences and Engineering Research Council (NSERC), Canada and the National Science Foundation (NSF), USA. A. Timmermann and T. Friedrich were supported by NSF grant 1010869.2014-05-2
    corecore