55 research outputs found

    Altered liver gene expression in CCl4-cirrhotic rats is partially normalized by insulin-like growth factor-I

    Get PDF
    We have previously shown that the administration of low doses of insulin-like growth factor-I (IGF-I) to CCl4-cirrhotic rats improves liver function and reduces fibrosis. To better understand the mechanisms behind the hepatoprotective effects of IGF-I, and to identify those genes whose expression is affected in cirrhosis and after IGF-1 treatment, we have performed differential display of mRNA analysis by means of polymerase chain reaction (PCR) in livers from control and CCl4-cirrhotic rats treated or not with IGF-I. We have identified 16 genes that were up- or down-regulated in the cirrhotic liver. IGF-I treatment partially normalized the expression of eight of these genes, including serine proteinase inhibitors such as serpin-2 and alpha-1-antichymotripsin, alpha-1-acid glycoprotein, and alpha-2u-globulin. Additionally, we show that IGF-I enhanced the regenerative activity in the cirrhotic liver, as determined by the increased expression of the proliferating cell nuclear antigen (PCNA). Finally, IGF-I treatment partially restored the expression of growth hormone receptor (GHR) and the levels of global genomic DNA methylation, which are reduced in human and experimental cirrhosis. Taken together, our observations confirm the hepatoprotective effects of IGF-I, and suggest that this action can be exerted in part through the normalization of liver gene expression, growth hormone (GH) responsiveness and global genomic DNA methylation

    Hepatoprotection and neuroprotection induced by low doses of IGF-II in aging rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GH and IGFs serum levels decline with age. Age-related changes appear to be associated to decreases in these anabolic hormones. We have previously demonstrated that IGF-I replacement therapy improves insulin resistance, lipid metabolism and reduces oxidative damage (in brain and liver) in aging rats. Using the same experimental model, the aim of this work was to study whether the exogenous administration of IGF-II, at low doses, acts analogous to IGF-I in aging rats.</p> <p>Methods</p> <p>Three experimental groups were included in this study: young healthy controls (yCO, 17 weeks old); untreated old rats (O, 103 weeks old); and aging rats treated with IGF-II (O+IGF-II, 2 μg * 100 g body weight<sup>-1 </sup>* day<sup>-1</sup>) for 30 days. Analytical parameters were determined in serum by routine laboratory methods using an autoanalyzer (Cobas Mira; Roche Diagnostic System, Basel, Switzerland). Serum levels of hormones (testosterone, IGF-I and insulin) were assessed by RIA. Serum Total Antioxidant Status was evaluated using a colorimetric assay. Mitochondrial membrane potential was evaluated using rhodamine 123 dye (adding different substrates to determine the different states). ATP synthesis in isolated mitochondria was determined by an enzymatic method.</p> <p>Results</p> <p>Compared with young controls, untreated old rats showed a reduction of IGF-I and testosterone levels with a decrease of serum total antioxidant status (TAS). IGF-II therapy improved serum antioxidant capability without modifying testosterone and IGF-I circulating concentrations. In addition, IGF-II treatment reduced oxidative damage in brain and liver, improving antioxidant enzyme activities and mitochondrial function. IGF-II was also able to reduce cholesterol and triglycerides levels increasing free fatty acids concentrations.</p> <p>Conclusions</p> <p>We demonstrate that low doses of IGF-II induce hepatoprotective, neuroprotective and metabolic effects, improving mitochondrial function, without affecting testosterone and IGF-I levels.</p

    Insulin-like growth factor-1 deficiency and metabolic syndrome

    Full text link

    Low-temperature plasma-assisted growth of optically transparent, highly oriented nanocrystalline AlN

    Get PDF
    Optically transparent, highly oriented nanocrystalline AlN(002) films have been synthesized using a hybrid plasma enhanced chemical vapor deposition and plasma-assisted radio frequency (rf) magnetron sputtering process in reactive Ar+ N2 and Ar+ N2 + H2 gas mixtures at a low Si(111)/glass substrate temperature of 350 °C. The process conditions, such as the sputtering pressure, rf power, substrate temperature, and N2 concentration were optimized to achieve the desired structural, compositional, and optical characteristics. X-ray diffractometry reveals the formation of highly c -oriented AlN films at a sputtering pressure of 0.8 Pa. Field emission scanning electron microscopy suggests the uniform distribution of AlN grains over large surface areas and also the existence of highly oriented in the (002) direction columnar structures of a typical length ∼100-500 nm with an aspect ratio of ∼7-15. X-ray photoelectron and energy dispersive x-ray spectroscopy suggest that films deposited at a rf power of 400 W feature a chemically pure and near stoichiometric AlN. The bonding states of the AlN films have been confirmed by Raman and Fourier transform infrared spectroscopy showing strong E2 (high) and E1 transverse optical phonon modes. Hydrogenated AlN films feature an excellent optical transmittance of ∼80% in the visible region of the spectrum, promising for advanced optical applications

    Altered liver gene expression in CCl4-cirrhotic rats is partially normalized by insulin-like growth factor-I

    No full text
    We have previously shown that the administration of low doses of insulin-like growth factor-I (IGF-I) to CCl4-cirrhotic rats improves liver function and reduces fibrosis. To better understand the mechanisms behind the hepatoprotective effects of IGF-I, and to identify those genes whose expression is affected in cirrhosis and after IGF-1 treatment, we have performed differential display of mRNA analysis by means of polymerase chain reaction (PCR) in livers from control and CCl4-cirrhotic rats treated or not with IGF-I. We have identified 16 genes that were up- or down-regulated in the cirrhotic liver. IGF-I treatment partially normalized the expression of eight of these genes, including serine proteinase inhibitors such as serpin-2 and alpha-1-antichymotripsin, alpha-1-acid glycoprotein, and alpha-2u-globulin. Additionally, we show that IGF-I enhanced the regenerative activity in the cirrhotic liver, as determined by the increased expression of the proliferating cell nuclear antigen (PCNA). Finally, IGF-I treatment partially restored the expression of growth hormone receptor (GHR) and the levels of global genomic DNA methylation, which are reduced in human and experimental cirrhosis. Taken together, our observations confirm the hepatoprotective effects of IGF-I, and suggest that this action can be exerted in part through the normalization of liver gene expression, growth hormone (GH) responsiveness and global genomic DNA methylation

    Quantification of mineral behavior in four dimensions: Grain boundary and substructure dynamics in salt

    No full text
    Here we present the first four dimensional (time and three dimensional space resolved) experiment on a strongly deformed geological material. Results show that even complicated microstructures with large continuous and discontinuous changes in crystallographic orientation can be resolved quantitatively. The details that can be resolved are unprecedented and therefore the presented technique promises to become influential in a wide range of geoscientific investigations. Grain and subgrain scale processes are fundamental to mineral deformation and associated Earth Dynamics, and time resolved observation of these processes is vital for establishing an in-depth understanding of the latter. However, until recently, in situ experiments were restricted to observations of two dimensional surfaces. We compared experimental results from two dynamic, in situ annealing experiments on a single halite crystal; a 2D experiment conducted inside the scanning electron microscope and a 3D X-ray diffraction experiment. This allowed us to evaluate the possible effects of the free surface on grain and subgrain processes. The extent to which surface effects cause experimental artifacts in 2D studies has long been questioned. Our study shows that, although the nature of recovery processes are the same, the area swept by subgrain boundaries is up to 5 times larger in the volume than observed on the surface. We suggest this discrepancy is due to enhanced drag force on subgrain boundaries by thermal surface grooving. Our results show that while it is problematic to derive absolute mobilities from 2D experiments, derived relative mobilities between boundaries with different misorientation angles can be used.9 page(s
    corecore