51,782 research outputs found
On routing-optimal networks for multiple unicasts
In this paper, we consider the problem of multiple unicast sessions over a directed acyclic graph. It is well known that linear network coding is insufficient for achieving the capacity region, in the general case. However, there exist networks for which routing is sufficient to achieve the whole rate region, and we refer to them as routing-optimal networks. We identify a class of routing-optimal networks, which we refer to as information-distributive networks, defined by three topological features. Due to these features, for each rate vector achieved by network coding, there is always a routing scheme such that it achieves the same rate vector, and the traffic transmitted through the network is exactly the information transmitted over the cut-sets between the sources and the sinks in the corresponding network coding scheme. We present examples of information-distributive networks, including some examples from (1) index coding and (2) from a single unicast session with hard deadline constraint. © 2014 IEEE
Nonfactorizable decay and QCD factorization
We study the unexpectedly large rate for the factorization-forbidden decay
within the QCD factorization approach. We use a non-zero
gluon mass to regularize the infrared divergences in vertex corrections. The
end-point singularities arising from spectator corrections are regularized and
carefully estimated by the off-shellness of quarks. We find that the
contributions arising from the vertex and leading-twist spectator corrections
are numerically small, and the twist-3 spectator contribution with chiral
enhancement and linear end-point singularity becomes dominant. With reasonable
choices for the parameters, the branching ratio for decay is
estimated to be in the range , which is compatible with
the Belle and BaBar data.Comment: Appendix added; it is emphasized that in the dominant twist-3
spectator corrections the end-point singularity contributions may be
estimated by the off-shellness of the charm quark (by the binding energy in
charmonium) and the gluon (by the transverse momentum of the light quark in
the kaon
Lattice Gluon Propagator in the Landau Gauge: A Study Using Anisotropic Lattices
Lattice gluon propagators are studied using tadpole and Symanzik improved
gauge action in Landau gauge. The study is performed using anisotropic lattices
with asymmetric volumes. The Landau gauge dressing function for the gluon
propagator measured on the lattice is fitted according to a leading power
behavior: with an exponent at small
momenta. The gluon propagators are also fitted using other models and the
results are compared. Our result is compatible with a finite gluon propagator
at zero momentum in Landau gauge.Comment: 14 pages, 4 figure
Energy-dependent Lorentz covariant parameterization of the NN interaction between 50 and 200 MeV
For laboratory kinetic energies between 50 and 200 MeV, we focus on
generating an energy-dependent Lorentz covariant parameterization of the
on-shell nucleon-nucleon (NN) scattering amplitudes in terms of a number of
Yukawa-type meson exchanges in first-order Born approximation. This
parameterization provides a good description of NN scattering observables in
the energy range of interest, and can also be extrapolated to energies between
40 and 300 MeV.Comment: 18 pages, 7 figures, Final version accepted by Physics Review
Magic numbers for superheavy nuclei in relativistic continuum Hartree-Bogoliubov theory
The magic proton and neutron numbers are searched in the superheavy region
with proton number =100 - 140 and neutron number = (+30) - (2+32)
by the relativistic continuum Hartree-Bogoliubov (RCHB) theory with
interactions NL1, NL3, NLSH, TM1, TW99, DD-ME1, PK1, and PK1R. Based on the
two-nucleon separation energies and , the two-nucleon gaps
and , the shell correction energies
and , the pairing energies and ,
and the pairing gaps and , =120, 132, and 138 and
=172, 184, 198, 228, 238, and 258 are suggested to be the magic numbers
within the present approach. The -decay half-lives are also discussed.
In addition, the potential energy surfaces of possible doubly magic nuclei are
obtained by the deformation-constrained relativistic mean field (RMF) theory,
and the shell effects stabilizing the nuclei are investigated. Furthermore, the
formation cross sections of 120 and 120 at the
optimal excitation energy are estimated by a phenomenological cold fusion
reactions model with the structure information extracted from the constrained
RMF calculation.Comment: 37 pages, 14 figure
- …
