89 research outputs found

    Use of MODIS Satellite Data to Evaluate Juniperus spp. Pollen Phenology to Support a Pollen Dispersal Model, PREAM, to Support Public Health Allergy Alerts

    Get PDF
    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and concentrations of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen emission is based on MODIS-derived phenology of Juniperus spp. communities. Ground-based observational records of pollen release timing and quantities will be used as model verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts

    Approximate policy iteration: A survey and some new methods

    Get PDF
    We consider the classical policy iteration method of dynamic programming (DP), where approximations and simulation are used to deal with the curse of dimensionality. We survey a number of issues: convergence and rate of convergence of approximate policy evaluation methods, singularity and susceptibility to simulation noise of policy evaluation, exploration issues, constrained and enhanced policy iteration, policy oscillation and chattering, and optimistic and distributed policy iteration. Our discussion of policy evaluation is couched in general terms and aims to unify the available methods in the light of recent research developments and to compare the two main policy evaluation approaches: projected equations and temporal differences (TD), and aggregation. In the context of these approaches, we survey two different types of simulation-based algorithms: matrix inversion methods, such as least-squares temporal difference (LSTD), and iterative methods, such as least-squares policy evaluation (LSPE) and TD (λ), and their scaled variants. We discuss a recent method, based on regression and regularization, which rectifies the unreliability of LSTD for nearly singular projected Bellman equations. An iterative version of this method belongs to the LSPE class of methods and provides the connecting link between LSTD and LSPE. Our discussion of policy improvement focuses on the role of policy oscillation and its effect on performance guarantees. We illustrate that policy evaluation when done by the projected equation/TD approach may lead to policy oscillation, but when done by aggregation it does not. This implies better error bounds and more regular performance for aggregation, at the expense of some loss of generality in cost function representation capability. Hard aggregation provides the connecting link between projected equation/TD-based and aggregation-based policy evaluation, and is characterized by favorable error bounds.National Science Foundation (U.S.) (No.ECCS-0801549)Los Alamos National Laboratory. Information Science and Technology InstituteUnited States. Air Force (No.FA9550-10-1-0412

    Predicting Missing Markers in Real-Time Optical Motion Capture

    No full text
    A common problem in optical motion capture of human-body movement is the so-called missing marker problem. The occlusion of markers can lead to significant problems in tracking accuracy unless a continuous flow of data is guaranteed by interpolation or extrapolation algorithms. Since interpolation algorithms require data sampled before and after an occlusion, they cannot be used for real-time applications. Extrapolation algorithms only require data sampled before an occlusion. Other algorithms require statistical data and are designed for postprocessing. In order to bridge sampling gaps caused by occluded markers and hence to improve 3D real-time motion capture, we suggest a computationally cost-efficient extrapolation algorithm partly combined with a so-called constraint matrix. The realization of this prediction algorithm does not require statistical data nor does it rely on an underlying kinematic human model with pre-defined marker distances. Under the assumption that human motion can be linear, circular, or a linear combination of both, a prediction method is realized. The paper presents measurements of a circular movement wherein a marker is briefly lost. The suggested extrapolation method behaves well for a reasonable number of frames, not exceeding around two seconds of time
    • …
    corecore