823 research outputs found
Trapping and Cooling a mirror to its quantum mechanical ground state
We propose a technique aimed at cooling a harmonically oscillating mirror to
its quantum mechanical ground state starting from room temperature. Our method,
which involves the two-sided irradiation of the vibrating mirror inside an
optical cavity, combines several advantages over the two-mirror arrangements
being used currently. For comparable parameters the three-mirror configuration
provides a stiffer trap for the oscillating mirror. Furthermore it prevents
bistability from limiting the use of higher laser powers for mirror trapping,
and also partially does so for mirror cooling. Lastly, it improves the
isolation of the mirror from classical noise so that its dynamics are perturbed
mostly by the vacuum fluctuations of the optical fields. These improvements are
expected to bring the task of achieving ground state occupation for the mirror
closer to completion.Comment: 5 pages, 1 figur
Using a Laguerre-Gaussian beam to trap and cool the rotational motion of a mirror
We show theoretically that it is possible to trap and cool the rotational
motion of a macroscopic mirror made of a perfectly reflecting spiral phase
element using orbital angular momentum transfer from a Laguerre-Gaussian
optical field. This technique offers a promising route to the placement of the
rotor in its quantum mechanical ground state in the presence of thermal noise.
It also opens up the possibility of simultaneously cooling a vibrational mode
of the same mirror. Lastly, the proposed design may serve as a sensitive
torsional balance in the quantum regime.Comment: New cavity design, reworked title; to appear in Phys. Rev. Let
The Origin of Power-Law Emergent Scaling in Large Binary Networks
In this paper we study the macroscopic conduction properties of large but
finite binary networks with conducting bonds. By taking a combination of a
spectral and an averaging based approach we derive asymptotic formulae for the
conduction in terms of the component proportions p and the total number of
components N. These formulae correctly identify both the percolation limits and
also the emergent power law behaviour between the percolation limits and show
the interplay between the size of the network and the deviation of the
proportion from the critical value of p = 1/2. The results compare excellently
with a large number of numerical simulations
Multi-parameter models of innovation diffusion on complex networks
A model, applicable to a range of innovation diffusion applications with a
strong peer to peer component, is developed and studied, along with methods for
its investigation and analysis. A particular application is to individual
households deciding whether to install an energy efficiency measure in their
home. The model represents these individuals as nodes on a network, each with a
variable representing their current state of adoption of the innovation. The
motivation to adopt is composed of three terms, representing personal
preference, an average of each individual's network neighbours' states and a
system average, which is a measure of the current social trend. The adoption
state of a node changes if a weighted linear combination of these factors
exceeds some threshold. Numerical simulations have been carried out, computing
the average uptake after a sufficient number of time-steps over many
realisations at a range of model parameter values, on various network
topologies, including random (Erdos-Renyi), small world (Watts-Strogatz) and
(Newman's) highly clustered, community-based networks. An analytical and
probabilistic approach has been developed to account for the observed
behaviour, which explains the results of the numerical calculations
A new generation of real-time systems in the JET tokamak
Recently a new recipe for developing and deploying
real-time systems has become increasingly adopted in the JET
tokamak. Powered by the advent of x86 multi-core technology
and the reliability of the JET’s well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide realtime performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests’ (IRQs) affinities together with the kernel’s CPU isolation mechanism allows to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded
Application Real-Time executor (MARTe) framework is used for
building applications particularly optimised for exploring multicore architectures. In the past year, four new systems based on this philosophy have been installed and are now part of the JET’s routine operation. The focus of the present work is on the configuration and interconnection of the ingredients that enable these new systems’ real-time capability and on the impact that JET’s distributed real-time architecture has on system engineering requirements, such as algorithm testing and plant commissioning. Details are given about the common real-time configuration and development path of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronising over a network is also presented. The goal is to compare its
deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel
Experimental evidence for 56Ni-core breaking from the low-spin structure of the N=Z nucleus 58Cu
Low-spin states in the odd-odd N=Z nucleus 58Cu were investigated with the
58Ni(p,n gamma)58Cu fusion evaporation reaction at the FN-tandem accelerator in
Cologne. Seventeen low spin states below 3.6 MeV and 17 new transitions were
observed. Ten multipole mixing ratios and 17 gamma-branching ratios were
determined for the first time. New detailed spectroscopic information on the
2+,2 state, the Isobaric Analogue State (IAS) of the 2+,1,T=1 state of 58Ni,
makes 58Cu the heaviest odd-odd N=Z nucleus with known B(E2;2+,T=1 --> 0+,T=1)
value. The 4^+ state at 2.751 MeV, observed here for the first time, is
identified as the IAS of the 4+,1,T=1 state in 58Ni. The new data are compared
to full pf-shell model calculations with the novel GXPF1 residual interaction
and to calculations within a pf5/2 configurational space with a residual
surface delta interaction. The role of the 56Ni core excitations for the
low-spin structure in 58Cu is discussed.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
Reform, Justice, and Sovereignty: A Food Systems Agenda for Environmental Communication
Food ecologies and economies are vital to the survival of communities, non-human species, and our planet. While environmental communication scholars have legitimated food as a topic of inquiry, the entangled ecological, cultural, economic, racial, colonial, and alimentary relations that sustain food systems demand greater attention. In this essay, we review literature within and beyond environmental communication, charting the landscape of critical food work in our field. We then illustrate how environmental justice commitments can invigorate interdisciplinary food systems-focused communication scholarship articulating issues of, and critical responses to, injustice and inequity across the food chain. We stake an agenda for food systems communication by mapping three orientations—food system reform, justice, and sovereignty—that can assist in our critical engagements with and interventions into the food system. Ultimately, we entreat environmental communication scholars to attend to the bends, textures, and confluences of these orientations so that we may deepen our future food-related inquiries
Investigating Agrobacterium-Mediated Transformation of Verticillium albo-atrum on Plant Surfaces
Background: Agrobacterium tumefaciens has long been known to transform plant tissue in nature as part of its infection process. This natural mechanism has been utilised over the last few decades in laboratories world wide to genetically manipulate many species of plants. More recently this technology has been successfully applied to non-plant organisms in the laboratory, including fungi, where the plant wound hormone acetosyringone, an inducer of transformation, is supplied exogenously. In the natural environment it is possible that Agrobacterium and fungi may encounter each other at plant wound sites, where acetosyringone would be present, raising the possibility of natural gene transfer from bacterium to fungus. Methodology/Principal Findings: We investigate this hypothesis through the development of experiments designed to replicate such a situation at a plant wound site. A. tumefaciens harbouring the plasmid pCAMDsRed was co-cultivated with the common plant pathogenic fungus Verticillium albo-atrum on a range of wounded plant tissues. Fungal transformants were obtained from co-cultivation on a range of plant tissue types, demonstrating that plant tissue provides sufficient vir gene inducers to allow A. tumefaciens to transform fungi in planta. Conclusions/Significance: This work raises interesting questions about whether A. tumefaciens may be able to transform organisms other than plants in nature, or indeed should be considered during GM risk assessments, with furthe
Prevalence of H63D, S65C and C282Y hereditary hemochromatosis gene mutations in Slovenian population by an improved high-throughput genotyping assay
<p>Abstract</p> <p>Background</p> <p>Hereditary hemochromatosis (HH) is a common genetic disease characterized by excessive iron overload that leads to multi-organ failure. Although the most prevalent genotype in HH is homozygosity for C282Y mutation of the <it>HFE </it>gene, two additional mutations, H63D and S65C, appear to be associated with a milder form of HH. The aim of this study was to develop a high-throughput assay for <it>HFE </it>mutations screening based on TaqMan technology and to determine the frequencies of <it>HFE </it>mutations in the Slovenian population.</p> <p>Methods</p> <p>Altogether, 1282 randomly selected blood donors from different Slovenian regions and 21 HH patients were analyzed for the presence of <it>HFE </it>mutations by an in-house developed real-time PCR assay based on TaqMan technology using shorter non-interfering fluorescent single nucleotide polymorphism (SNP)-specific MGB probes. The assay was validated by RFLP analysis and DNA sequencing.</p> <p>Results</p> <p>The genotyping assay of the H63D, S65C and C282Y mutations in the <it>HFE </it>gene, based on TaqMan technology proved to be fast, reliable, with a high-throughput capability and 100% concordant with genotypes obtained by RFLP and DNA sequencing. The observed frequency of C282Y homozygotes in the group of HH patients was only 48%, others were of the heterogeneous <it>HFE </it>genotype. Among 1282 blood donors tested, the observed H63D, S65C and C282Y allele frequency were 12.8% (95% confidence interval (CI) 11.5 – 14.2%), 1.8% (95% CI 1.4 – 2.5%) and 3.6% (95% CI 3.0 – 4.5%), respectively. Approximately 33% of the tested subjects had at least one of the three HH mutations, and 1% of them were C282Y homozygotes or compound heterozygotes C282Y/H63D or C282Y/S65C, presenting an increased risk for iron overload disease. A significant variation in H63D allele frequency was observed for one of the Slovenian regions.</p> <p>Conclusion</p> <p>The improved real-time PCR assay for H63D, S65C and C282Y mutations detection is accurate, fast, cost-efficient and ready for routine screening and diagnostic procedures. The genotype frequencies in the Slovenian population agree with those reported for the Central European populations although some deviations where observed in comparison with other populations of Slavic origin. Regional distribution of the mutations should be considered when planning population screening.</p
- …