8,375 research outputs found

    Controlling quantum transport through a single molecule

    Full text link
    We investigate multi-terminal quantum transport through single monocyclic aromatic annulene molecules, and their derivatives, using the nonequilibrium Green function approach in the self-consistent Hartree-Fock approximation. A new device concept, the Quantum Interference Effect Transistor (QuIET) is proposed, exploiting perfect destructive interference stemming from molecular symmetry, and controlling current flow by introducing decoherence and/or elastic scattering that break the symmetry. This approach overcomes the fundamental problems of power dissipation and environmental sensitivity that beset many nanoscale device proposals.Comment: 4 pages, 5 figure

    Oscillating magnetoresistance due to fragile spin structure in metallic GdPd3_3

    Get PDF
    Studies on the phenomenon of magnetoresistance (MR) have produced intriguing and application-oriented outcomes for decades--colossal MR, giant MR and recently discovered extremely large MR of millions of percents in semimetals can be taken as examples. We report here the investigation of oscillating MR in a cubic intermetallic compound GdPd3_3, which is the only compound that exhibits MR oscillations between positive and negative values. Our study shows that a very strong correlation between magnetic, electrical and magnetotransport properties is present in this compound. The magnetic structure in GdPd3_3 is highly fragile since applied magnetic fields of moderate strength significantly alter the spin arrangement within the system--a behavior that manifests itself in the oscillating MR. Intriguing magnetotransport characteristics of GdPd3_3 are appealing for field-sensitive device applications, especially if the MR oscillation could materialize at higher temperature by manipulating the magnetic interaction through perturbations caused by chemical substitutions.Comment: 10 pages, 7 figures. A slightly modified version is published in Scientific Report

    Cross-Sender Bit-Mixing Coding

    Full text link
    Scheduling to avoid packet collisions is a long-standing challenge in networking, and has become even trickier in wireless networks with multiple senders and multiple receivers. In fact, researchers have proved that even {\em perfect} scheduling can only achieve R=O(1lnN)\mathbf{R} = O(\frac{1}{\ln N}). Here NN is the number of nodes in the network, and R\mathbf{R} is the {\em medium utilization rate}. Ideally, one would hope to achieve R=Θ(1)\mathbf{R} = \Theta(1), while avoiding all the complexities in scheduling. To this end, this paper proposes {\em cross-sender bit-mixing coding} ({\em BMC}), which does not rely on scheduling. Instead, users transmit simultaneously on suitably-chosen slots, and the amount of overlap in different user's slots is controlled via coding. We prove that in all possible network topologies, using BMC enables us to achieve R=Θ(1)\mathbf{R}=\Theta(1). We also prove that the space and time complexities of BMC encoding/decoding are all low-order polynomials.Comment: Published in the International Conference on Information Processing in Sensor Networks (IPSN), 201

    XVII. On the Bhattikavya

    Get PDF
    n/

    Towards Scalable Visual Exploration of Very Large RDF Graphs

    Full text link
    In this paper, we outline our work on developing a disk-based infrastructure for efficient visualization and graph exploration operations over very large graphs. The proposed platform, called graphVizdb, is based on a novel technique for indexing and storing the graph. Particularly, the graph layout is indexed with a spatial data structure, i.e., an R-tree, and stored in a database. In runtime, user operations are translated into efficient spatial operations (i.e., window queries) in the backend.Comment: 12th Extended Semantic Web Conference (ESWC 2015
    corecore