22 research outputs found

    Characterization of Ku702–NLS as Bipartite Nuclear Localization Sequence for Non-Viral Gene Delivery

    Get PDF
    Several barriers have to be overcome in order to achieve gene expression in target cells, e.g. cellular uptake, endosomal release and translocation to the nucleus. Nuclear localization sequences (NLS) enhance gene delivery by increasing the uptake of plasmid DNA (pDNA) to the nucleus. So far, only monopartite NLS were analysed for non-viral gene delivery. In this study, we examined the characteristics of a novel bipartite NLS like construct, namely NLS Ku70. We synthesized a dimeric structure of a modified NLS from the Ku70 protein (Ku702-NLS), a nuclear transport active mutant of Ku702-NLS (s1Ku702-NLS) and a nuclear transport deficient mutant of Ku702-NLS (s2Ku702). We examined the transfection efficiency of binary Ku702-NLS/DNA and ternary Ku702-NLS/PEI/DNA gene vector complexes in vitro by using standard transfection protocols as well as the magnetofection method. The application of Ku702-NLS and s1Ku702-NLS increased gene transfer efficiency in vitro and in vivo. This study shows for the first time that the use of bipartite NLS compounds alone or in combination with cationic polymers is a promising strategy to enhance the efficiency of non-viral gene transfer

    Cell type differences in activity of the Streptomyces bacteriophage ϕC31 integrase

    Get PDF
    Genomic integration by the Streptomyces bacteriophage ϕC31 integrase is a promising tool for non-viral gene therapy of various genetic disorders. We investigated the ϕC31 integrase recombination activity in T cell derived cell lines, primary T lymphocytes and CD34+ haematopoietic stem cells in comparison to mesenchymal stem cells and cell lines derived from lung-, liver- and cervix-tissue. In T cell lines, enhanced long-term expression above control was observed only with high amounts of integrase mRNA. Transfections of ϕC31 integrase plasmids were not capable of mediating enhanced long-term transgene expression in T cell lines. In contrast, moderate to high efficiency could be detected in human mesenchymal stem cells, human lung, liver and cervix carcinoma cell lines. Up to 100-fold higher levels of recombination product was found in ϕC31 integrase transfected A549 lung than Jurkat T cells. When the ϕC31 integrase activity was normalized to the intracellular integrase mRNA levels, a 16-fold difference was found. As one possible inhibitor of the ϕC31 integrase, we found 3- to 5-fold higher DAXX levels in Jurkat than in A549 cells, which could in addition to other yet unknown factors explain the observed discrepancy of ϕC31 integrase activity

    Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    Get PDF
    Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP) colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP)-expressing astrocytes. This study represents a novel virus-free approach for direct reprogramming of human fibroblasts to a neural precursor fate

    Tendon healing induced by chemically modified mRNAs

    No full text
    Tendon disorders are frequent both in human and veterinary medicine with high re-injury rates and unsatisfactory therapeutic treatments. Application of naked chemically modified mRNA (cmRNA) encoding for a therapeutic protein, presents itself as an innovative approach addressing tendon healing. In the current study, we demonstrate that injection of naked cmRNA in glucose-containing solution into tendons results in high protein expression in healthy and experimentally injured tendons. Injection of BMP-7 encoding cmRNA resulted in increased BMP-7 protein expression, less fulminant degradation of collagen type I, decreased collagen type III formation as well as trends towards higher collagen I/III ratio and chemotactic cell attraction in surgically dissected tendons compared to vehicle treatment. Moreover reporter protein encoding cmRNA was injected into acute tendon injuries in a highly translational sheep model, revealing wide spread and profound tissue transfection in pathologically affected tissue. Summarizing, these results demonstrate the potential of cmRNAs encoding for therapeutic proteins as a new class of drugs for the treatment of tendon disorders
    corecore