48 research outputs found
Time delays in quasi-periodic pulsations observed during the X2.2 solar flare on 2011 February 15
We report observations of quasi-periodic pulsations (QPPs) during the X2.2
flare of 2011 February 15, observed simultaneously in several wavebands. We
focus on fluctuations on time scale 1-30 s and find different time lags between
different wavebands. During the impulsive phase, the Reuven Ramaty High Energy
Solar Spectroscopic Imager (RHESSI) channels in the range 25-100 keV lead all
the other channels. They are followed by the Nobeyama RadioPolarimeters at 9
and 17 GHz and the Extreme Ultra-Violet (EUV) channels of the Euv
SpectroPhotometer (ESP) onboard the Solar Dynamic Observatory (SDO). The
Zirconium and Aluminum filter channels of the Large Yield Radiometer (LYRA)
onboard the Project for On-Board Autonomy (PROBA2) satellite and the SXR
channel of ESP follow. The largest lags occur in observations from the
Geostationary Operational Environmental Satellite (GOES), where the channel at
1-8 {\AA} leads the 0.5-4 {\AA} channel by several seconds. The time lags
between the first and last channels is up to 9 s. We identified at least two
distinct time intervals during the flare impulsive phase, during which the QPPs
were associated with two different sources in the Nobeyama RadioHeliograph at
17 GHz. The radio as well as the hard X-ray channels showed different lags
during these two intervals. To our knowledge, this is the first time that time
lags are reported between EUV and SXR fluctuations on these time scales. We
discuss possible emission mechanisms and interpretations, including flare
electron trapping
4pi Models of CMEs and ICMEs
Coronal mass ejections (CMEs), which dynamically connect the solar surface to
the far reaches of interplanetary space, represent a major anifestation of
solar activity. They are not only of principal interest but also play a pivotal
role in the context of space weather predictions. The steady improvement of
both numerical methods and computational resources during recent years has
allowed for the creation of increasingly realistic models of interplanetary
CMEs (ICMEs), which can now be compared to high-quality observational data from
various space-bound missions. This review discusses existing models of CMEs,
characterizing them by scientific aim and scope, CME initiation method, and
physical effects included, thereby stressing the importance of fully 3-D
('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication
in Solar Physics (SUN-360 topical issue
Analyzing the propagation of EUV waves and their connection with type II radio bursts by combining numerical simulations and multi-instrument observations
Context. EUV (EIT) waves are wavelike disturbances of enhanced extreme ultraviolet (EUV) emission that propagate away from an eruptive active region across the solar disk. Recent years have seen much debate over their nature, with three main interpretations: the fast-mode magneto-hydrodynamic (MHD) wave, the apparent wave (reconfiguration of the magnetic field), and the hybrid wave (combination of the previous two).
Aims. By studying the kinematics of EUV waves and their connection with type II radio bursts, we aim to examine the capability of the fast-mode interpretation to explain the observations, and to constrain the source locations of the type II radio burst emission.
Methods. We propagate a fast-mode MHD wave numerically using a ray-tracing method and the WKB (Wentzel-Kramers-Brillouin) approximation. The wave is propagated in a static corona output by a global 3D MHD Coronal Model, which provides density, temperature, and Alfvén speed in the undisturbed coronal medium (before the eruption). We then compare the propagation of the computed wave front with the observed wave in EUV images (PROBA2/SWAP, SDO/AIA). Lastly, we use the frequency drift of the type II radio bursts to track the propagating shock wave, compare it with the simulated wave front at the same instant, and identify the wave vectors that best match the plasma density deduced from the radio emission. We apply this methodology for two EUV waves observed during SOL2017-04-03T14:20:00 and SOL2017-09-12T07:25:00.
Results. The simulated wave front displays a good qualitative match with the observations for both events. Type II radio burst emission sources are tracked on the wave front all along its propagation. The wave vectors at the ray-path points that are characterized as sources of the type II radio burst emission are quasi-perpendicular to the magnetic field.
Conclusions. We show that a simple ray-tracing model of the EUV wave is able to reproduce the observations and to provide insight into the physics of such waves. We provide supporting evidence that they are likely fast-mode MHD waves. We also narrow down the source region of the radio burst emission and show that different parts of the wave front are responsible for the type II radio burst emission at different times of the eruptive event
A Search for Solar Energetic Particle Events with Flareless Coronal Mass Ejections
International audienc
A Search for Solar Energetic Particel Events with Radio-Silent Coronal Mass Ejections
International audienc
A Search for Solar Energetic Particel Events with Radio-Silent Coronal Mass Ejections
International audienc