73 research outputs found

    Accelerating Empowerment Computation with UCT Tree Search

    Get PDF
    Models of intrinsic motivation present an important means to produce sensible behaviour in the absence of extrinsic rewards. Applications in video games are varied, and range from intrinsically motivated general game-playing agents to non-player characters such as companions and enemies. The information-theoretic quantity of Empowerment is a particularly promising candidate motivation to produce believable, generic and robust behaviour. However, while it can be used in the absence of external reward functions that would need to be crafted and learned, empowerment is computationally expensive. In this paper, we propose a modified UCT tree search method to mitigate empowerment's computational complexity in discrete and deterministic scenarios. We demonstrate how to modify a Monte-Carlo Search Tree with UCT to realise empowerment maximisation, and discuss three additional modifications that facilitate better sampling. We evaluate the approach both quantitatively, by analysing how close our approach gets to the baseline of exhaustive empowerment computation with varying amounts of computational resources, and qualitatively, by analysing the resulting behaviour in a Minecraft-like scenario

    First record of the neotropical subgenus Hylaeus (Gongyloprosopis) Snelling, 1982, for Brazil (Hymenoptera: Colletidae).

    Get PDF
    We report the first record of the neotropical bee subgenus Hylaeus (Gongyloprosopis) Snelling, 1982 (Colletidae) for Brazil. Additionally, an overview of the current geographic records for the three known species of the subgenus is presented. We expand the distribution of Hylaeus (Gongyloprosopis) orbicus (Vachal, 1910), the male is illustrated, and the first floral association with Vismia japurensis Reichardt (Hypericaeae) is reported for this species

    Tyrosine kinase chromosomal translocations mediate distinct and overlapping gene regulation events

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leukemia is a heterogeneous disease commonly associated with recurrent chromosomal translocations that involve tyrosine kinases including BCR-ABL, TEL-PDGFRB and TEL-JAK2. Most studies on the activated tyrosine kinases have focused on proximal signaling events, but little is known about gene transcription regulated by these fusions.</p> <p>Methods</p> <p>Oligonucleotide microarray was performed to compare mRNA changes attributable to BCR-ABL, TEL-PDGFRB and TEL-JAK2 after 1 week of activation of each fusion in Ba/F3 cell lines. Imatinib was used to control the activation of BCR-ABL and TEL-PDGFRB, and TEL-JAK2-mediated gene expression was examined 1 week after Ba/F3-TEL-JAK2 cells were switched to factor-independent conditions.</p> <p>Results</p> <p>Microarray analysis revealed between 800 to 2000 genes induced or suppressed by two-fold or greater by each tyrosine kinase, with a subset of these genes commonly induced or suppressed among the three fusions. Validation by Quantitative PCR confirmed that eight genes (Dok2, Mrvi1, Isg20, Id1, gp49b, Cxcl10, Scinderin, and collagen Vα1(Col5a1)) displayed an overlapping regulation among the three tested fusion proteins. Stat1 and Gbp1 were induced uniquely by TEL-PDGFRB.</p> <p>Conclusions</p> <p>Our results suggest that BCR-ABL, TEL-PDGFRB and TEL-JAK2 regulate distinct and overlapping gene transcription profiles. Many of the genes identified are known to be involved in processes associated with leukemogenesis, including cell migration, proliferation and differentiation. This study offers the basis for further work that could lead to an understanding of the specificity of diseases caused by these three chromosomal translocations.</p

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)
    corecore