9,183 research outputs found

    Recent advances in understanding idiopathic pulmonary fibrosis

    Get PDF
    Despite major research efforts leading to the recent approval of pirfenidone and nintedanib, the dismal prognosis of idiopathic pulmonary fibrosis (IPF) remains unchanged. The elaboration of international diagnostic criteria and disease stratification models based on clinical, physiological, radiological, and histopathological features has improved the accuracy of IPF diagnosis and prediction of mortality risk. Nevertheless, given the marked heterogeneity in clinical phenotype and the considerable overlap of IPF with other fibrotic interstitial lung diseases (ILDs), about 10% of cases of pulmonary fibrosis remain unclassifiable. Moreover, currently available tools fail to detect early IPF, predict the highly variable course of the disease, and assess response to antifibrotic drugs. Recent advances in understanding the multiple interrelated pathogenic pathways underlying IPF have identified various molecular phenotypes resulting from complex interactions among genetic, epigenetic, transcriptional, post-transcriptional, metabolic, and environmental factors. These different disease endotypes appear to confer variable susceptibility to the condition, differing risks of rapid progression, and, possibly, altered responses to therapy. The development and validation of diagnostic and prognostic biomarkers are necessary to enable a more precise and earlier diagnosis of IPF and to improve prediction of future disease behaviour. The availability of approved antifibrotic therapies together with potential new drugs currently under evaluation also highlights the need for biomarkers able to predict and assess treatment responsiveness, thereby allowing individualised treatment based on risk of progression and drug response. This approach of disease stratification and personalised medicine is already used in the routine management of many cancers and provides a potential road map for guiding clinical care in IPF

    On the Experimental Estimation of Surface Enhanced Raman Scattering (SERS) Cross Sections by Vibrational Pumping

    Get PDF
    We present an in-depth analysis of the experimental estimation of cross sections in Surface Enhanced Raman Scattering (SERS) by vibrational pumping. The paper highlights the advantages and disadvantages of the technique, pinpoints the main aspects and limitations, and provides the underlying physical concepts to interpret the experimental results. Examples for several commonly used SERS probes are given, and a discussion on future possible developments is also presented.Comment: To be submitted to J. Phys. Chem.

    Registered Lands Revisited

    Get PDF

    Registered Lands Revisited

    Get PDF
    corecore