7,267 research outputs found

    Spectroscopy of i-Dropout Galaxies with an NB921-Band Depression in the Subaru Deep Field

    Full text link
    We report new spectroscopy of two star-forming galaxies with strong Ly_alpha emission at z=6.03 and z=6.04 in the Subaru Deep Field. These two objects are originally selected as i'-dropouts (i'-z' > 1.5) showing an interesting photometric property, the ``NB921 depression''. The NB921-band (centered at 9196A) magnitude is significantly depressed with respect to the z'-band magnitude. The optical spectra of these two objects exhibit asymmetric emission-lines at lambda_obs ~ 8540A and ~ 8560A, suggesting that these objects are Ly_alpha emitters at z~6. The rest-frame equivalent widths of the Ly_alpha emission of the two objects are 94A and 236A; the latter one is the Ly_alpha emitter with the largest Ly_alpha equivalent width at z > 6 ever spectroscopically confirmed. The spectroscopically measured Ly_alpha fluxes of these two objects are consistent with the interpretation that the NB921 depression is caused by the contribution of the strong Ly_alpha emission to the z'-band flux. Most of the NB921-depressed i'-dropout objects are thought to be strong Ly_alpha emitters at 6.0 < z < 6.5; Galactic L and T dwarfs and NB921-dropout galaxies at z > 6.6 do not dominate the NB921-depressed i'-dropout sample. Thus the NB921-depression method is very useful for finding high-z Ly_alpha emitters with a large Ly_alpha equivalent width over a large redshift range, 6.0 < z < 6.5. Although the broadband-selected sample at z ~ 3 contains only a small fraction of objects with a Ly_alpha equivalent width larger than 100A, the i'-dropout sample of the Subaru Deep Field contains a much larger fraction of such strong Ly_alpha emitters. This may imply a strong evolution of the Ly_alpha equivalent width from z > 6 to z ~ 3.Comment: 21 pages, 6 figures, to appear in The Astrophysical Journa

    Direct evidence for an early reionization of the Universe?

    Full text link
    We examine the possible reionization of the intergalactic medium (IGM) by the source UDF033238.7-274839.8 (hereafter HUDF-JD2), which was discovered in deep {\it HST}/VLT/{\it Spitzer} images obtained as part of the Great Observatory Origins Deep Survey and {\it Hubble} Ultra-Deep Field projects. Mobasher et al (2005) have identified HUDF-JD2 as a massive (6×1011M\sim6\times10^{11}M_\odot) post-starburst galaxy at redshift z6.5\gtrsim6.5. We find that HUDF-JD2 may be capable of reionizing its surrounding region of the Universe, starting the process at a redshift as high as z15±5\approx 15 \pm5.Comment: 6 pages, 2 figures. Accepted for publication in ApJ Letter

    Fine structure of K\mathrm{K}-excitons in multilayers of transition metal dichalcogenides

    Full text link
    Reflectance and magneto-reflectance experiments together with theoretical modelling based on the kp\mathbf{k\cdot p} approach have been employed to study the evolution of direct bandgap excitons in MoS2_2 layers with a thickness ranging from mono- to trilayer. The extra excitonic resonances observed in MoS2_2 multilayers emerge as a result of the hybridization of Bloch states of each sub-layer due to the interlayer coupling. The properties of such excitons in bi- and trilayers are classified by the symmetry of corresponding crystals. The inter- and intralayer character of the reported excitonic resonances is fingerprinted with the magneto-optical measurements: the excitonic gg-factors of opposite sign and of different amplitude are revealed for these two types of resonances. The parameters describing the strength of the spin-orbit interaction are estimated for bi- and trilayer MoS2_2.Comment: 14 pages, 10 figure

    Electronic structures of Cr1δ_{1-\delta}X (X=S, Te) studied by Cr 2p soft x-ray magnetic circular dichroism

    Get PDF
    Cr 2p core excited XAS and XMCD spectra of ferromagnetic Cr1δ_{1-\delta}Te with several concentrations of δ\delta=0.11-0.33 and ferrimagnetic Cr5_{5}S6_{6} have been measured. The observed XMCD lineshapes are found to very weakly depend on δ\delta for Cr1δ_{1-\delta}Te. The experimental results are analyzed by means of a configuration-interaction cluster model calculation with consideration of hybridization and electron correlation effects. The obtained values of the spin magnetic moment by the cluster model analyses are in agreement with the results of the band structure calculation.The calculated result shows that the doped holes created by the Cr deficiency exist mainly in the Te 5porbital of Cr1δ_{1-\delta}Te, whereas the holes are likely to be in Cr 3d state for Cr5_{5}S6_{6}.Comment: 8 pages, 6 figures, accepted for publication in Physical Review

    High Redshift Quasars and Star Formation in the Early Universe

    Full text link
    In order to derive information on the star formation history in the early universe we observed 6 high-redshift (z=3.4) quasars in the near-infrared to measure the relative iron and \mgii emission strengths. A detailed comparison of the resulting spectra with those of low-redshift quasars show essentially the same FeII/MgII emission ratios and very similar continuum and line spectral properties, indicating a lack of evolution of the relative iron to magnesium abundance of the gas since z=3.4 in bright quasars. On the basis of current chemical evolution scenarios of galaxies, where magnesium is produced in massive stars ending in type II SNe, while iron is formed predominantly in SNe of type Ia with a delay of ~1 Gyr and assuming as cosmological parameters H_o = 72 km/s Mpc, Omega_M = 0.3, and Omega_Lambda = 0.7$, we conclude that major star formation activity in the host galaxies of our z=3.4 quasars must have started already at an epoch corresponding to z_f ~= 10, when the age of the universe was less than 0.5 Gyrs.Comment: 29 pages, 5 figures, ApJ in pres

    Effect of Quantum Fluctuations on Magnetic Ordering in CaV3_3O7_7

    Full text link
    We present a theoretical model for CaV3_3O7_7: the 1/41/4-depleted square spin-1/21/2 Heisenberg model which includes both the nearest-neighbor coupling (JJ) and the next-nearest-neighbor coupling (JJ'), where JJ and JJ' are antiferromagnetic. Recent experiments of the neutron diffraction by Harashina et.al. report the magnetic ordering at low temperatures, which may be called as a stripe phase. It is shown that the observed spin structure is not stable in the classical theory. By employing the modified spin wave theory, we show that the stripe phase is stabilized by the quantum fluctuations for J/J>0.69J'/J > 0.69. In CaV3_3O7_7, the coupling constants are estimated as JJJ \sim J' by comparing the theoretical and experimental results.Comment: submitted to J. Phys. Soc. Jp
    corecore