18,723 research outputs found

    Realization of Universal Optimal Quantum Machines by Projective Operators and Stochastic Maps

    Full text link
    Optimal quantum machines can be implemented by linear projective operations. In the present work a general qubit symmetrization theory is presented by investigating the close links to the qubit purification process and to the programmable teleportation of any generic optimal anti-unitary map. In addition, the contextual realization of the N ->M cloning map and of the teleportation of the N->(M-N) universal NOT gate is analyzed by a novel and very general angular momentum theory. An extended set of experimental realizations by state symmetrization linear optical procedures is reported. These include the 1->2 cloning process, the UNOT gate and the quantum tomographic characterization of the optimal partial transpose map of polarization encoded qubits.Comment: 11 pages, 7 figure

    Transient increases in intracellular calcium and reactive oxygen species levels in TCam-2 cells exposed to microgravity

    Get PDF
    The effects of microgravity on functions of the human body are well described, including alterations in the male and female reproductive systems. In the present study, TCam-2 cells, which are considered a good model of mitotically active male germ cells, were used to investigate intracellular signalling and cell metabolism during exposure to simulated microgravity, a condition that affects cell shape and cytoskeletal architecture. After a 24 hour exposure to simulated microgravity, TCam-2 cells showed 1) a decreased proliferation rate and a delay in cell cycle progression, 2) increased anaerobic metabolism accompanied by increased levels of intracellular Ca(2+), reactive oxygen species and superoxide anion and modifications in mitochondrial morphology. Interestingly, all these events were transient and were no longer evident after 48 hours of exposure. The presence of antioxidants prevented not only the effects described above but also the modifications in cytoskeletal architecture and the activation of the autophagy process induced by simulated microgravity. In conclusion, in the TCam-2 cell model, simulated microgravity activated the oxidative machinery, triggering transient macroscopic cell events, such as a reduction in the proliferation rate, changes in cytoskeleton-driven shape and autophagy activation

    Single Superconducting Split-Ring Resonator Electrodynamics

    Full text link
    We investigate the microwave electrodynamic properties of a single superconducting thin film split-ring resonator (SRR). The experiments were performed in an all-Nb waveguide, with Nb wires and Nb SRRs. Transmission data showed a high-Q stopband for a single Nb SRR (Q∼4.5×104Q \sim 4.5\times10^4 at 4.2 K) below TcT_c, and no such feature for a Cu SRR, or closed Nb loops, of similar dimensions. Adding SRRs increased the bandwidth, but decreased the insertion loss of the features. Placing the Nb SRR into an array of wires produced a single, elementary negative-index passband (Q∼2.26×104Q \sim 2.26\times10^4 at 4.2 K). Changes in the features due to the superconducting kinetic inductance were observed. Models for the SRR permeability, and the wire dielectric response, were used to fit the data.Comment: 4 pages, 3 figures, RevTex, submitted to Applied Physics Letters. Updated version includes mention of bianisotropy, better looking figures, and different temperature dat

    Modifications of the hydrogen bond network of liquid water in a cylindrical SiO_2 pore

    Full text link
    We present results of molecular dynamics simulations of water confined in a silica pore. A cylindrical cavity is created inside a vitreous silica cell with geometry and size similar to the pores of real Vycor glass. The simulations are performed at different hydration levels. At all hydration levels water adsorbs strongly on the Vycor surface; a double layer structure is evident at higher hydrations. At almost full hydration the modifications of the confinement-induced site-site pair distribution functions are in qualitative agreement with neutron diffraction experiment. A decrease in the number of hydrogen bonds between water molecules is observed along the pore radius, due to the tendency of the molecules close to the substrate to form hydrogen-bonds with the hydrophilic pore surface. As a consequence we observe a substrate induced distortion of the H-bond tetrahedral network of water molecules in the regions close to the surface.Comment: Talk presented at "Physics of Liquids: Foundations, Highlights, Challenge", Murau Sept. 1998. To appear in J. Mol. Li

    Translation-Rotation Coupling in Transient Grating Experiments : Theoretical and Experimental Evidences

    Full text link
    The results of a Transient Grating experiment in a supercooled molecular liquid of anisotropic molecules and its theoretical interpretation are presented. These results show the existence of two distinct dynamical contributions in the response function of this experiment, density and orientation dynamics. These dynamics can be experimentally disentangled by varying the polarisation of the probe and diffracted beams and they have been identified and measured in a Heterodyne Detected experiment performed on m-toluidine. The results of the theory show a good qualitative agreement with the measurements at all temperatures.Comment: PDF format, 14 pages including 4 figures, accepted for publication in EPL. minor modification

    What information could the main actors of liquid biopsy provide? A representative case of non-small cell lung cancer (NSCLC)

    Get PDF
    In non-small cell lung cancer (NSCLC), there is a consensus regarding the use of liquid biopsy, generally, to detect "druggable" mutations and, in particular, to monitor tyrosine kinase inhibitor (TKI) treatments. However, whether circulating tumor cells (CTCs) are better tools than cell-free DNA (cfDNA), is still a matter of debate, mainly concerning which antigen(s) we should use to investigating simultaneously both epithelial and epithelial-to-mesenchymal transient (EMT) phenotype in the same sample of CTCs. To address this item, we exploited here a single-tube liquid biopsy, to detect both epithelial cell adhesion molecule (EpCAM)-positive CTCs and EpCAM-low/negative CTCs, because down-modulation of EpCAM is considered the first step in EMT. Furthermore, we analyzed the DNA from CTCs of four different phenotypes (ctcDNA), according to their EpCAM expression and cytokeratin pattern, and circulating tumor DNA (ctDNA) by droplet digital PCR (ddPCR), in order to disclose activating and resistancedriving mutations. Liquid biopsy reflected spatial and temporal heterogeneity of the tumor under treatment pressure. We provide the proof-of-concept that the complementary use of ctDNA and ctcDNA represents a reliable, minimally invasive and dynamic tool for a more comprehensive view of tumor evolution
    • …
    corecore