3,175 research outputs found

    Higher-Order Properties of Analytic Wavelets

    Full text link
    The influence of higher-order wavelet properties on the analytic wavelet transform behavior is investigated, and wavelet functions offering advantageous performance are identified. This is accomplished through detailed investigation of the generalized Morse wavelets, a two-parameter family of exactly analytic continuous wavelets. The degree of time/frequency localization, the existence of a mapping between scale and frequency, and the bias involved in estimating properties of modulated oscillatory signals, are proposed as important considerations. Wavelet behavior is found to be strongly impacted by the degree of asymmetry of the wavelet in both the frequency and the time domain, as quantified by the third central moments. A particular subset of the generalized Morse wavelets, recognized as deriving from an inhomogeneous Airy function, emerge as having particularly desirable properties. These "Airy wavelets" substantially outperform the only approximately analytic Morlet wavelets for high time localization. Special cases of the generalized Morse wavelets are examined, revealing a broad range of behaviors which can be matched to the characteristics of a signal.Comment: 15 pages, 6 Postscript figure

    Generalized Morse Wavelets as a Superfamily of Analytic Wavelets

    Full text link
    The generalized Morse wavelets are shown to constitute a superfamily that essentially encompasses all other commonly used analytic wavelets, subsuming eight apparently distinct types of analysis filters into a single common form. This superfamily of analytic wavelets provides a framework for systematically investigating wavelet suitability for various applications. In addition to a parameter controlling the time-domain duration or Fourier-domain bandwidth, the wavelet {\em shape} with fixed bandwidth may be modified by varying a second parameter, called γ\gamma. For integer values of γ\gamma, the most symmetric, most nearly Gaussian, and generally most time-frequency concentrated member of the superfamily is found to occur for γ=3\gamma=3. These wavelets, known as "Airy wavelets," capture the essential idea of popular Morlet wavelet, while avoiding its deficiencies. They may be recommended as an ideal starting point for general purpose use

    On the Analytic Wavelet Transform

    Full text link
    An exact and general expression for the analytic wavelet transform of a real-valued signal is constructed, resolving the time-dependent effects of non-negligible amplitude and frequency modulation. The analytic signal is first locally represented as a modulated oscillation, demodulated by its own instantaneous frequency, and then Taylor-expanded at each point in time. The terms in this expansion, called the instantaneous modulation functions, are time-varying functions which quantify, at increasingly higher orders, the local departures of the signal from a uniform sinusoidal oscillation. Closed-form expressions for these functions are found in terms of Bell polynomials and derivatives of the signal's instantaneous frequency and bandwidth. The analytic wavelet transform is shown to depend upon the interaction between the signal's instantaneous modulation functions and frequency-domain derivatives of the wavelet, inducing a hierarchy of departures of the transform away from a perfect representation of the signal. The form of these deviation terms suggests a set of conditions for matching the wavelet properties to suit the variability of the signal, in which case our expressions simplify considerably. One may then quantify the time-varying bias associated with signal estimation via wavelet ridge analysis, and choose wavelets to minimize this bias

    Analysis of Modulated Multivariate Oscillations

    Full text link
    The concept of a common modulated oscillation spanning multiple time series is formalized, a method for the recovery of such a signal from potentially noisy observations is proposed, and the time-varying bias properties of the recovery method are derived. The method, an extension of wavelet ridge analysis to the multivariate case, identifies the common oscillation by seeking, at each point in time, a frequency for which a bandpassed version of the signal obtains a local maximum in power. The lowest-order bias is shown to involve a quantity, termed the instantaneous curvature, which measures the strength of local quadratic modulation of the signal after demodulation by the common oscillation frequency. The bias can be made to be small if the analysis filter, or wavelet, can be chosen such that the signal's instantaneous curvature changes little over the filter time scale. An application is presented to the detection of vortex motions in a set of freely-drifting oceanographic instruments tracking the ocean currents

    On the relation between sSFR and metallicity

    Full text link
    In this paper we present an exact general analytic expression Z(sSFR)=y/Λ(sSFR)+I(sSFR)Z(sSFR)=y/\Lambda(sSFR)+I(sSFR) linking the gas metallicity Z to the specific star formation rate (sSFR), that validates and extends the approximate relation put forward by Lilly et al. (2013, L13), where yy is the yield per stellar generation, Λ(sSFR)\Lambda(sSFR) is the instantaneous ratio between inflow and star formation rate expressed as a function of the sSFR, and II is the integral of the past enrichment history, respectively. We then demonstrate that the instantaneous metallicity of a self-regulating system, such that its sSFR decreases with decreasing redshift, can be well approximated by the first term on the right-hand side in the above formula, which provides an upper bound to the metallicity. The metallicity is well approximated also by the L13 ideal regulator case, which provides a lower bound to the actual metallicity. We compare these approximate analytic formulae to numerical results and infer a discrepancy <0.1 dex in a range of metallicities and almost three orders of magnitude in the sSFR. We explore the consequences of the L13 model on the mass-weighted metallicity in the stellar component of the galaxies. We find that the stellar average metallicity lags 0.1-0.2 dex behind the gas-phase metallicity relation, in agreement with the data. (abridged)Comment: 14 pages, 6 figures, MNRAS accepte

    Frequency-Domain Stochastic Modeling of Stationary Bivariate or Complex-Valued Signals

    Get PDF
    There are three equivalent ways of representing two jointly observed real-valued signals: as a bivariate vector signal, as a single complex-valued signal, or as two analytic signals known as the rotary components. Each representation has unique advantages depending on the system of interest and the application goals. In this paper we provide a joint framework for all three representations in the context of frequency-domain stochastic modeling. This framework allows us to extend many established statistical procedures for bivariate vector time series to complex-valued and rotary representations. These include procedures for parametrically modeling signal coherence, estimating model parameters using the Whittle likelihood, performing semi-parametric modeling, and choosing between classes of nested models using model choice. We also provide a new method of testing for impropriety in complex-valued signals, which tests for noncircular or anisotropic second-order statistical structure when the signal is represented in the complex plane. Finally, we demonstrate the usefulness of our methodology in capturing the anisotropic structure of signals observed from fluid dynamic simulations of turbulence.Comment: To appear in IEEE Transactions on Signal Processin

    Oxygen Gas Abundances at 0.4<z<1.5: Implications for the Chemical Evolution History of Galaxies

    Full text link
    We report VLT-ISAAC and Keck-NIRSPEC near-infrared spectroscopy for a sample of 30 0.47<z<0.92 CFRS galaxies and five [OII]-selected, M_B,AB<-21.5, z~1.4 galaxies. We have measured Halpha and [NII] line fluxes for the CFRS galaxies which have [OII], Hbeta and [OIII] line fluxes available from optical spectroscopy. For the z~1.4 objects we measured Hbeta and [OIII] emission line fluxes from J-band spectra, and Halpha line fluxes plus upper limits for [NII] fluxes from H-band spectra. We derive the extinction and oxygen abundances for the sample using a method based on a set of ionisation parameter and oxygen abundance diagnostics, simultaneously fitting the [OII], Hbeta, [OIII], Halpha and [NII] line fluxes. Our most salient conclusions are: a) the source of gas ionisation in the 30 CFRS and in all z~1.4 galaxies is not due to AGN activity; b) about one third of the 0.47<z<0.92 CFRS galaxies in our sample have substantially lower metallicities than local galaxies with similar luminosities and star formation rates; c) comparison with a chemical evolution model indicates that these low metallicity galaxies are unlikely to be the progenitors of metal-poor dwarf galaxies at z~0, but more likely the progenitors of massive spirals; d) the z~1.4 galaxies are characterized by the high [OIII]/[OII] line ratios, low extinction and low metallicity that are typical of lower luminosity CADIS galaxies at 0.4<z<0.7, and of more luminous Lyman Break Galaxies at z~3.1, but not seen in CFRS galaxies at 0.4<z<1.0; e) the properties of the z~1.4 galaxies suggest that the period of rapid chemical evolution takes place progressively in lower mass systems as the universe ages, and thus provides further support for a downsizing picture of galaxy formation, at least from z~1.4 to today.Comment: Proceedings contribution for "The Fabulous Destiny of Galaxies; Bridging Past and Present", Marseille, 200

    A Power Variance Test for Nonstationarity in Complex-Valued Signals

    Full text link
    We propose a novel algorithm for testing the hypothesis of nonstationarity in complex-valued signals. The implementation uses both the bootstrap and the Fast Fourier Transform such that the algorithm can be efficiently implemented in O(NlogN) time, where N is the length of the observed signal. The test procedure examines the second-order structure and contrasts the observed power variance - i.e. the variability of the instantaneous variance over time - with the expected characteristics of stationary signals generated via the bootstrap method. Our algorithmic procedure is capable of learning different types of nonstationarity, such as jumps or strong sinusoidal components. We illustrate the utility of our test and algorithm through application to turbulent flow data from fluid dynamics

    Near-Infrared Spectroscopy of 0.4<z<1.0 CFRS Galaxies: Oxygen Abundances, SFRs and Dust

    Full text link
    Using new J-band VLT-ISAAC and Keck-NIRSPEC spectroscopy, we have measured Halpha and [NII] line fluxes for 0.47<z<0.92 CFRS galaxies which have [OII], Hbeta and [OIII]a line fluxes available from optical spectroscopy, to investigate how the properties of the star forming gas in galaxies evolve with redshift. We derive the extinction and oxygen abundances for the sample using a method based on a set of ionisation parameter and oxygen abundance diagnostics, simultaneously fitting the [OII], Hbeta,[OIII], Halpha, and [NII] line fluxes. The individual reddening measurements allow us to accurately correct the Halpha-based star formation rate (SFR) estimates for extinction. Our most salient conclusions are: a) in all 30 CFRS galaxies the source of gas ionisation is not due to AGN activity; b) we find a range of 0<AV<3, suggesting that it is important to determine the extinction for every single galaxy in order to reliably measure SFRs and oxygen abundances in high redshift galaxies; c) high values of [NII]/Halpha >0.1 for most (but not all) of the CFRS galaxies indicate that they lie on the high-metallicity branch of the R23 calibration; d) about one third of the 0.47<z<0.92 CFRS galaxies in our sample have lower metallicities than local galaxies with similar luminosities and star formation rates; e) comparison with a chemical evolution model indicates that these low metallicity galaxies are unlikely to be the progenitors of metal-poor dwarf galaxies at z~0.Comment: Accepted for publication in the Astrophysical Journa
    corecore