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Abstract—There are three equivalent ways of representing
two jointly observed real-valued signals: as a bivariate vector
signal, as a single complex-valued signal, or as two analytic
signals known as the rotary components. Each representation
has unique advantages depending on the system of interest and
the application goals. In this paper we provide a joint framework
for all three representations in the context of frequency-domain
stochastic modeling. This framework allows us to extend many
established statistical procedures for bivariate vector time series
to complex-valued and rotary representations. These include pro-
cedures for parametrically modeling signal coherence, estimating
model parameters using the Whittle likelihood, performing semi-
parametric modeling, and choosing between classes of nested
models using model choice. We also provide a new method of
testing for impropriety in complex-valued signals, which tests
for noncircular or anisotropic second-order statistical structure
when the signal is represented in the complex plane. Finally,
we demonstrate the usefulness of our methodology in capturing
the anisotropic structure of signals observed from fluid dynamic
simulations of turbulence.
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I. INTRODUCTION

IN many applications of signal processing, there is a need

to jointly analyze two real-valued signals when they share

a common dependence structure. Examples include radio

frequency position and displacement measurements of blood-

flow [1], and eastward and northward geophysical signals such

as wind or ocean current velocities [2]. There are three distinct

mathematical ways of representing two real-valued signals: as

a bivariate vector signal, as a single complex-valued signal,
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and as two complex-valued analytic signals known as the

rotary components. Each representation has unique advantages

depending on the system of interest and the application goals.

To motivate the need for these different representations,

in Fig. 1(a) we plot the satellite-tracked position trajectories

of a large array of freely-drifting oceanographic instruments

obtained from the Global Drifter Program [3]. In Figs. 1(b)

and 1(c) we plot a 40-day position trajectory from a North-

Atlantic drifter, together with the velocities corresponding to

the eastward and northward displacements of this trajectory.

In Fig. 1(d) we display a multi-taper spectral density esti-

mate of a complex-valued velocity signal constructed from

Fig. 1(c). The spectrum is supported over both negative and

positive frequencies, distinguishing oscillatory behavior with a

preferred direction of rotation, known commonly as the rotary

components [2]. Fig. 1(d) reveals that the signal contains two

counter-rotating oscillations at different frequencies. This is

not as easily observed in the bivariate time-domain represen-

tation of Fig. 1(c), thus motivating the benefits of considering

different representations of two jointly observed signals.

In many applications there is a need to specify a simple

parametric model for the signal structure, and then to estimate

these parameters from a set of observed signals. In this paper

we describe a framework for parametrically modeling and

estimating the parameters of two real-valued signals in each

of the three representations as stationary Gaussian stochastic

processes. This builds on ideas found in [4]–[8] for non-

parametric or deterministic modeling of complex-valued sig-

nals, with further understanding developed in [2], [9], [10] for

atmospheric and oceanographic processes.

Approaches to stochastic parametric modeling of complex-

valued signals have been primarily focused on the class of

autoregressive moving average (ARMA) models using widely-

linear filters, see e.g. [11]–[14]. In this paper, we propose more

general classes of stochastic parametric models for complex-

valued and rotary representations; and we connect these with

well-known bivariate modeling techniques such as [15]. The

background for mathematically connecting the representations

is given in Section II. Then in Section III we propose novel

parametric models for specifying either the bivariate coherency

or the rotary coherency—two important quantities which are

shown to be distinct, thus providing new and easily interpreted

model structures.

Our joint framework allows well-known procedures for

bivariate modeling to be extended to complex-valued and

rotary representations. First in Section IV we provide com-

putationally efficient procedures for parameter estimation, by
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Fig. 1. (a) satellite-tracked position trajectories from multiple freely-drifting instruments from the Global Drifter Program
(www.aoml.noaa.gov/phod/dac). (b) a 40-day position trajectory of North Atlantic drifter ID#44000. (c) velocities of this drifter over time
in each Cartesian direction. (d) a multi-taper spectral density estimate of the rotary components, using the discrete prolate spheroidal sequence (dpss) tapers
with bandwidth parameter 3, with negative and positive frequencies overlaid.

extending the Whittle likelihood from the bivariate to complex-

valued and rotary representations. Then in Section V-A we

demonstrate how the Whittle likelihood can naturally be used

with semi-parametric modeling techniques (relating this to

the seminal work of [16]). In Section V-B we construct a

parametric test for impropriety, which also tests for anisotropy

if the signals are tracking spatial positions like the ocean

drifters. In Section V-C, we detail how model choice is

correctly performed with complex-valued and rotary signals

when selecting between nested models. Finally, in Section VI

we demonstrate the usefulness of our methodology in devel-

oping key physical understanding, by applying our methods

to signals obtained from fluid dynamic models of turbulence.

II. BACKGROUND

A bivariate pair of real-valued signals can be given two

other equivalent representations: as a complex-valued signal,

or as a pair of analytic signals which we call the rotary

components. The information contained in each of these three

representations—bivariate/complex/rotary—is equivalent, but

the operations required to transform between them are in

general nontrivial. In this section we provide a brief back-

ground with necessary definitions and notation, culminating

with Table I which links the various spectral representations.

Much of the material in this section can be found in [4]–[8].

A. Bivariate Processes

Consider a zero-mean continuous-time bivariate Gaussian

process, denoted at time t by [X(t) Y (t)]T , where “T ” denotes

matrix transpose. Using the Cramér spectral representation

theorem, we define this process in terms of the orthogonal

increments processes dΨX(ω) and dΨY (ω) such that

[
X(t)
Y (t)

]
≡ 1

2π

∫ [
dΨX(ω)
dΨY (ω)

]
eiωt, (1)

where i ≡
√
−1. The statistics of the bivariate process can

also be fully specified by the power spectral matrix SB(ω)
defined by

SB(ω)δ(ω − ν)dωdν ≡
1

2π
E

{[
dΨX(ω)
dΨY (ω)

] [
dΨ∗

X(ν) dΨ∗
Y (ν)

]}
, (2)

where δ(·) is the Dirac-delta function and ∗ denotes the

complex conjugate. We denote the elements of SB(ω) by

SB(ω) =

[
SXX(ω) SXY (ω)
S∗
XY (ω) SY Y (ω)

]
. (3)

The power spectral densities SXX(ω) and SY Y (ω) are real-

valued, nonnegative, and symmetric in ω, whereas the cross-

spectral density SXY (ω) is complex-valued and Hermitian
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symmetric. Finally, the statistics of the bivariate process can

be fully specified by the covariance matrix RB(τ) defined by

RB(τ) ≡ E

{[
X(t)
Y (t)

] [
X(t− τ) Y (t− τ)

]}
, (4)

where the elements of the matrix RB(τ) are denoted by

RB(τ) =

[
sXX(τ) sXY (τ)
s∗XY (τ) sY Y (τ)

]
. (5)

From these definitions it follows that

RB(τ) =

1

4π2

∫ ∫
eiωte−iν(t−τ) E

{[
dΨX(ω)
dΨY (ω)

] [
dΨ∗

X(ν) dΨ∗
Y (ν)

]}

=
1

2π

∫
SB(ω)e

iωτdω, (6)

such that the covariance matrix RB(τ) forms a Fourier pair

with the power spectral matrix SB(ω).

B. Complex-valued Processes

The bivariate real-valued process [X(t) Y (t)]T can alterna-

tively be expressed as a single complex-valued signal defined

by

Z(t) ≡ X(t) + iY (t). (7)

In this case the second-order statistics of [X(t) Y (t)]T are

equivalent to the statistics of Z(t) together with its complex

conjugate Z∗(t), as we now show; see also [5], [6].

The process Z(t) can be expressed in terms of the orthog-

onal increments process dΨZ(ω) ≡ dΨX(ω)+ idΨY (ω) such

that

Z(t) =
1

2π

∫
dΨZ(ω)e

iωt. (8)

The statistics of the complex-valued process Z(t) can also be

fully specified from the power spectral matrix SC(ω) defined

by

SC(ω)δ(ω − ν)dωdν ≡
1

2π
E

{[
dΨZ(ω)
dΨ∗

Z(−ω)

] [
dΨ∗

Z(ν) dΨZ(−ν)
]}

, (9)

where the elements of the matrix SC(ω) are denoted by

SC(ω) =

[
SZZ(ω) RZZ(ω)
R∗

ZZ(ω) SZZ(−ω)

]
. (10)

The power spectral density SZZ(ω) is real-valued and nonneg-

ative, but not necessarily symmetric in ω, whereas the com-

plementary spectrum1 RZZ(ω) is in general complex-valued

and is always symmetric in ω, i.e. RZZ(ω) = RZZ(−ω).
The statistics of the complex-valued process Z(t) can also

be fully specified by the covariance matrix RC(τ) defined by

RC(τ) ≡ E

{[
Z(t)
Z∗(t)

] [
Z∗(t− τ) Z(t− τ)

]}
, (11)

1We clarify a distinction in our notation whereby R(ω) refers to a
complementary spectrum and R(τ) refers to a covariance matrix. This is
chosen as such to be consistent with the conventional notation in the literature.

where

RC(τ) =

[
sZZ(τ) rZZ (τ)
r∗ZZ(τ) sZZ(−τ)

]
. (12)

Similarly to (6) it can be shown thatRC(τ) and SC(ω) form a

Fourier pair. If the off-diagonal term of RC(τ) vanishes (that

is rZZ(τ) = 0 for all τ ), or equivalently if the off-diagonal

term of SC(ω) vanishes (that is RZZ(ω) = 0 for all ω), then

the process is said to be proper or circular, and otherwise it

is improper or noncircular [6].

To link the bivariate and complex representations, we ex-

press SC(ω) in terms of SB(ω) in (3). To do this we first

define the unitary matrix

T ≡ 1√
2

[
1 i
1 −i

]
, (13)

which has the property that TT H = I, where I is the 2 ×
2 identity matrix and H denotes the Hermitian transpose. It

follows that [
Z(t)
Z∗(t)

]
=

√
2T

[
X(t)
Y (t)

]
. (14)

Then from (9), and using the property dΨZ∗(ω) = dΨ∗
Z(−ω),

where dΨZ∗(ω) is defined from (8) as the orthogonal incre-

ments of Z∗(t), we have that

SC(ω)δ(ω − ν)dωdν

=
1

2π
E

{[
dΨZ(ω)
dΨZ∗(ω)

] [
dΨ∗

Z(ν) dΨ∗
Z∗(ν)

]}

=
1

2π
E

{√
2T

[
dΨX(ω)
dΨY (ω)

] [
dΨ∗

X(ν) dΨ∗
Y (ν)

]√
2T H

}
,

(15)

such that from (2) we can observe that

SC(ω) = 2TSB(ω)T
H. (16)

If we expand the matrices in (16) then we arrive at direct

transformations between {SXX(ω), SY Y (ω), SXY (ω)} and

{SZZ(ω), RZZ(ω)}, which are displayed as part of Table I—

a table which provides transformations between the power

spectra for the bivariate, complex, and rotary representations.

C. Rotary Components

A third representation we consider is to split the complex-

valued signal into analytic and anti-analytic components, as

is commonly performed in signal processing [7], [17], [18].

These components are also known as the rotary compo-

nents [2], [8], and we define these by
[
Z+(t)
Z−(t)

]
≡ 1

2π

∫ [
dΨZ+(ω)
dΨZ−(ω)

]
eiωt, (17)

where the orthogonal increments are given by
[
dΨZ+(ω)
dΨZ−(ω)

]
≡ U(ω)

[
dΨZ(ω)
dΨ∗

Z(−ω)

]
. (18)

Here U(ω) is the unit (or Heaviside) step function defined by

U(ω) ≡





1 ω > 0
1/2 ω = 0
0 ω < 0.

(19)
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TABLE I
RELATIONSHIPS BETWEEN SPECTRA OF THREE DIFFERENT REPRESENTATIONS OF TWO JOINTLY OBSERVED REAL-VALUED SIGNALS: BIVARIATE (LEFT

COLUMN), COMPLEX-VALUED (MIDDLE COLUMN), AND ROTARY (RIGHT COLUMN)

Bivariate (X/Y ) Complex (Z/Z∗) Rotary (Z+/Z−) (ω 6= 0)

B
iv

ar
ia

te

SXX(ω)
1

4
[SZZ (ω) + SZZ(−ω)] 1

4
[S++(|ω|) + S−−(|ω|)]

+ 1

2
ℜ{RZZ (ω)} + 1

2
ℜ{S+−(|ω|}

SY Y (ω)
1

4
[SZZ (ω) + SZZ(−ω)] 1

4
[S++(|ω|) + S−−(|ω|)]

− 1

2
ℜ{RZZ (ω)} − 1

2
ℜ{S+−(|ω|}

SXY (ω)
1

2
ℑ{RZZ (ω)} 1

2
ℑ{S+−(|ω|)}

+ 1

4
i [SZZ (ω) − SZZ (−ω)] + i

4
sgn(ω) [S++(|ω|)− S−−(|ω|)]

C
o
m

p
le

x

SXX(ω) + SY Y (ω)
SZZ(ω) S++(ω) + S−−(−ω)

+2ℑ{SXY (ω)}

SXX(ω) − SY Y (ω)
RZZ (ω) S+−(ω) + S+−(−ω)

+2iℜ{SXY (ω)}

R
o
ta

ry
(ω

>
0
)

SXX(ω) + SY Y (ω)
SZZ(ω) S++(ω)

+2ℑ{SXY (ω)}

SXX(ω) + SY Y (ω)
SZZ(−ω) S−−(ω)

−2ℑ{SXY (ω)}

SXX(ω) − SY Y (ω)
RZZ (ω) S+−(ω)

+2iℜ{SXY (ω)}

The three elements in a given row are equal for the specified range of ω, for example the last row reads: SXX(ω)− SY Y (ω)
+2iℜ{SXY (ω)} = RZZ (ω) = S+−(ω) for ω > 0, where ℜ{·} and ℑ{·} refer to the real and imaginary parts respectively.

It follows from these definitions that

Z(t) = [Z−(t)]∗ + Z+(t). (20)

As in [7], we construct the processes Z+(t) and Z−(t) such

that they are both analytic, that is, supported only on positive

frequencies. The anti-analytic component of Z(t) is recovered

by taking the conjugate of Z−(t). Therefore Z+(t) and

[Z−(t)]∗ are the analytic and anti-analytic signals associated

with Z(t), while Z−(t) is referred to as the conjugate analytic

signal. The statistics of the process can also be specified in

terms of the power spectral matrix S±(ω) where

S±(ω)δ(ω − ν)dωdν ≡
1

2π
E

{[
dΨZ+(ω)
dΨZ−(ω)

] [
dΨ∗

Z+(ν) dΨ∗
Z−(ν)

]}
, (21)

where the elements of the matrix S±(ω) are denoted by

S±(ω) =

[
S++(ω) S+−(ω)
S∗
+−(ω) S−−(ω)

]
. (22)

It then follows by substituting (18) into (21) that

S±(ω) = U2(ω)SC(ω). (23)

This then provides a direct mapping between

{S++(ω), S−−(ω), S+−(ω)} and {SZZ(ω), RZZ(ω)}.

Furthermore, by combining (16) and (23) we also arrive at

transformations between {SXX(ω), SY Y (ω), SXY (ω)} and

{S++(ω), S−−(ω), S+−(ω)}. These are provided in Table I

for ω > 0. Our choice to make Z−(t) analytic simplifies the

representations, as the rotary components are defined only for

nonnegative frequencies, such that all the spectral densities

in S±(ω) are zero for negative frequencies. The relationships

between the bivariate and complex/rotary representations are

nontrivial, and highlight some of the differences between

working with bivariate and complex-valued data. We will

refer to Table I in future sections to provide more intuition

and simplify calculations.

III. STOCHASTIC MODELING OF COHERENCY

We now introduce a framework for the specification of

stochastic models for pairs of real-valued signals. The ap-

proach we shall adopt is that first a representation of bivari-

ate/complex/rotary is selected, and then the main diagonal

of the corresponding spectral matrix S(ω) in either (3),

(10), or (22) is specified. Then the respective off-diagonal

term must also be specified, which becomes equivalent to

modeling the coherency of the signal. First, in Section III-A,

we propose models for the bivariate coherency in the bivariate

representation; then, in Section III-B, we propose models for

the rotary coherency in the rotary representation. Note that

we do not have a subsection for modeling in the complex-

valued representation, as equivalent models can be easily

constructed from the rotary representation models and using

the transformations of Table I.

A. Bivariate coherency

For bivariate processes, we refer to the off-diagonal entry

SXY (ω) of SB(ω) in (3) as the bivariate cross-spectrum, and

represent this object as a product of terms

SXY (ω) = ρXY (ω) [SXX(ω)SY Y (ω)]
1/2

ρXY (ω) = σXY (ω)e
−iθXY (ω), (24)

where |ρXY (ω)| ≤ 1 is the coherency of X(t) and Y (t),
σXY (ω) is the coherence, and θXY (ω) is the group delay,

quantifying whether X(t) or Y (t) are leading or lagging in
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time at frequency-cycleω. We refer to ρXY (ω) as the bivariate

coherency. Note that ρXY (ω) is in general complex-valued,

whereas the coherence σXY (ω) and group delay θXY (ω) are

real-valued. The coherence and group delay must satisfy

σXY (ω) = σXY (−ω), |σXY (ω)| ≤ 1

θXY (−ω) = −θXY (ω), (25)

on account of the required Hermitian symmetry of SXY (ω).
This follows because while its Fourier pair sXY (τ) does not

satisfy the evenness of sXX(τ) or sY Y (τ), it is still real-

valued.

From a modeling standpoint, see for example [15], we may

also regard (24) as specifying the bivariate cross-spectrum for

a given choice of the individual spectra SXX(ω) and SY Y (ω).
The proposed parametric model for X(t) and Y (t) is a valid

Gaussian process if:

1) SXX(ω) ≥ 0 and SY Y (ω) ≥ 0 for all ω,

2) |σXY (ω)| ≤ 1 for all ω, such that 1) and 2) together

ensure the determinant of the spectral matrix SB(ω)
defined in (3) is nonnegative for all ω (such that the

spectral matrix itself is nonnegative definite),

3) σXY (ω) is an even function in ω and θXY (ω) is an

odd function in ω (such that SXY (ω) is Hermitian

symmetric), and

4) the spectral matrix SB(ω) is integrable.

Given the large flexibility for specifying σXY (ω) and

θXY (ω), we propose some practical forms. In essence the

parameter σXY (ω) is providing the magnitude of correlation,

and θXY (ω) is strongly linked to time shifts or misalignments

between X(t) and Y (t). If the system is dispersive [15] we

would expect θXY (ω) to change non-linearly in form across

frequencies; if the system is non-dispersive, θXY (ω) would be

linear and the coefficient of the linear term would quantify a

time-delay.

Many signals are correlated at low frequencies, but become

less so at higher frequencies where erratic variability is found.

We therefore would commonly find σXY (ω) to be a decaying

function bounded above by unity. Three types of decay might

be expected:

1) compactly supported σXY (ω) showing no correlation

magnitude above frequency ω0,

2) exponentially decaying σXY (ω) showing a rapid decay,

3) σXY (ω) exhibiting slow polynomial decay.

A realistic parametric model for the first case, that is

compactly supported coherency, would correspond to

σXY (ω) =

{∣∣∣
∑J

j=0 ajω
2j
∣∣∣ , 0 ≤ |ω| ≤ ω0,

0, ω0 < |ω|.
(26)

This form is straightforward and interpretable; although we

must ensure that the aj coefficients are selected such that

σXY (ω) is bounded above by unity for all |ω| ≤ ω0, and that

σXY (ω0) = 0 to achieve continuity in frequency. This model

proposes no coherence for frequencies higher than ω0, and so

this parameter emerges as specifying a natural timescale of

the bivariate process.

In the second case, where we allow ω to go unbounded. A

convenient form for a decaying σXY (ω) is the logistic function

given by

σXY (ω) =
σ0

[
1 + eq(0)

]

1 + eq(ω)
,

q(ω) = q0 + q1ω
2 + . . . qrω

2r. (27)

This model guarantees that σXY (ω) is an even function as

required in (25). We require that the highest-order poly-

nomial coefficient is positive, i.e. qr > 0, to ensure

limω→∞ σXY (±ω) = 0, and the qi coefficients must be

selected such that |σXY (ω)| ≤ 1 for all ω.

Finally, to yield the third case where the bivariate coherence

decays polynomially we propose

σXY (ω) =
σ0

[
(ω − ω0)

2
+ b2

]α/2 , 0 < σ0 <
(
ω2
0 + b2

)α/2
.

(28)

This form allows the smoothness of the cross-spectrum to be

directly manipulated by varying α, and is related to spatial

modeling using the Matérn covariance kernel [19].

Hermitian symmetry dictates that the group delay θXY (ω) is

required to be an odd function, and we propose the parametric

form

θXY (ω) = θ1ω + θ2ω
3 + · · ·+ θlω

2l−1. (29)

Note that while a constant phase is not valid across all

frequencies, we may have a phase that is locally constant

within particular frequency bands (see [15, p.137]), and where

the polynomial form of (29) may simply be considered a non-

parametric approximation to the group delay. A function that

depends on higher terms than linear are exhibiting a non-

linear frequency-dependent time delay, a characteristic of a

wave passing through a dispersive medium [15].

Next we ask what constraint is imposed on the bivariate

coherence and group delay if we require the signal to be

proper, such that RZZ(ω) = 0 in (10). It follows from Table I

that we require SXX(ω) = SY Y (ω) and ℜ{SXY (ω)} = 0
for the signal to be proper. For the second condition, by

inspecting (24) and (25), we see that we require that at

each positive frequency |ω| where SXX(|ω|) = SY Y (|ω|) >
0, either that σXY (|ω|) = 0 or θXY (|ω|) = ±π/2 and

θXY (−|ω|) = ∓π/2, such that X and Y are strictly “out of

phase.” The latter possibility follows from the fact that a zero-

mean Gaussian signal is proper if and only if it is circular (i.e.

a signal whose properties are invariant under rotation), see [6].

An example of such would be a deterministic signal which

follows an exact circle, which corresponds to σXY (ω) = 1
and θXY (ω) = ±sgn(ω)π/2.

B. Rotary coherency

We can alternatively specify a stochastic model for the

coherency between rotary components Z+(t) and Z−(t). As

we have chosen the two processes to be analytic, and thus

supported only on positive frequencies, we only need to model

the covariance between dΨZ+(ω) and dΨZ−(ω) for ω > 0.

This is equivalent to the covariance between the increment
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processes of dΨZ(ω) and dΨ∗
Z(−ω), as can be seen from

contrasting (9) with (21). Therefore in addition to specifying

the variance of dΨZ+(ω) and dΨZ−(ω), corresponding to

specifying the rotary spectra S++(ω) and S−−(ω), we only

need to model their covariance at the same frequency, which

corresponds to the rotary cross-spectrum given by

S+−(ω) = ρ±(ω) [S++(ω)S−−(ω)]
1/2

,

ρ±(ω) = σ±(ω)e
−iθ±(ω), (30)

where |ρ±(ω)| ≤ 1 is the rotary coherency of Z+ and Z−,

σ±(ω) is the rotary coherence, and θ±(ω) is the rotary group

delay.

As in the bivariate case, one may construct models for

the rotary coherence σ±(ω) and rotary group delay θ±(ω)
analogous to (26)–(29), with the difference that these functions

now only need to be supported over positive frequencies. This

conveniently means that we are not constrained to require

σ±(ω) and θ±(ω) to be even and odd functions respectively.

For the proposed model for Z+(t) and Z−(t) to be a valid

Gaussian process, we now only require the three conditions:

1) S++(ω) ≥ 0 and S−−(ω) ≥ 0 for all ω,

2) |σ±(ω)| ≤ 1 for all ω, such that 1) and 2) together

ensure the determinant of the spectral matrix S±(ω)
in (22) is nonnegative for all ω (such that the spectral

matrix itself is nonnegative definite), and

3) the spectral matrix S±(ω) is integrable.

By inspecting Table I, we observe a useful property. If X(t)
and Y (t) are known to be uncorrelated with each other, we

see that S+−(ω) is real-valued for all ω. This means that in

such cases we only need to specify a real-valued model for

ρ±(ω). In such instances, the simplest positive and compactly

supported frequency-dependent model for the rotary coherency

(related to the model of (26)) is

ρ±(ω) =

{
|a0 − a1ω| , 0 < ω ≤ ω0,

a0

a1
= ω0,

0, ω0 < ω.
(31)

We use this simple rotary coherency model in our oceano-

graphic example in Section VI. If more complex forms are

required for the rotary coherency, we can replace (26) with

an expansion using both even and odd terms. Similarly (29)

can also be replaced by an expansion using both even and odd

terms, already advocated as an approximation by [15].

The magnitude of the coherency specified by (31) will have

implications for representing the complex-valued signal as an

ellipse [8], [20] and therefore has a geometric interpretation.

The ellipse defined between the axis of dZ(ω) and dZ∗(−ω)
will represent a line if ρ±(ω) = 1, and a circle if ρ±(ω) =
0 (yielding propriety of Zt). The intrinsic geometry of the

complex-valued signal (e.g. the ellipse, circle or rectilinear

motion mapped out by the trajectory) can therefore be seen

as specifying σ±(ω), while temporal shifts and misalignments

are encoded by θ±(ω).
By inspecting Table I we see that a proper complex-valued

signal has no rotary coherency, i.e. S+−(ω) = 0, which

is a useful definition of propriety. This can be exploited

to formulate a test for impropriety, as is detailed later in

Section V-B. Furthermore, for spatially driven processes such

as oceanographic signals obtained from drifters, propriety is

found to be related to the condition of spatial isotropy, with

impropriety in turn implying anisotropy. Thus by testing for

impropriety in the time series signal, we can test for anisotropy

in the spatial process that generates the sampled signal.

Modeling in bivariate or rotary components is of course

equivalent, but as can be seen from Table I, a parametric

model represented in one decomposition will not in general be

interpretable and compactly represented in the other—hence

the need to specify classes of models in both decompositions.

IV. PARAMETER ESTIMATION

In this section we turn to the problem of estimating the

parameters of a chosen model from observations. Maximum

likelihood is a standard approach but is computationally slow

requiring calculation of the determinant and inverse of the

time-domain covariance matrix. Instead, [21] proposed using

what later became known as the Whittle likelihood, which

approximates the time-domain log-likelihood in the frequency

domain in O(N logN) operations, where N is the length

of the observed signal. In this section, we derive the cor-

rect form of the Whittle likelihood in each of the bivari-

ate/complex/rotary representations, such that it can be easily

implemented for any of the model specifications discussed in

Section III.

A. Maximum Likelihood for Bivariate Processes

Henceforth we let X and Y denote length N samples of

the corresponding stochastic processes arranged as column

vectors. To find the log-likelihood appropriate for the bivariate

process consisting of X and Y we concatenate the two time

domain samples into a single vector: BT = [XT Y T ]. The

theoretical 2N × 2N covariance matrix for this vector under

the assumed model is denoted by CB(θ) = E
{
BBT

}
. The

log-likelihood of the vector B can then be written as

ℓ(θ)
C
= −1

2
log |CB(θ)| −

1

2
BTC−1

B (θ)B. (32)

The superscript “−1” is the matrix inverse, |X| denotes the

determinant of matrix X , and
C
= denotes equality up to an

additive constant which can be ignored as we are optimizing

the objective function. The best choice of parameter-vector

θ for our chosen model to characterize the observed data is

found by maximizing the log-likelihood function

θ̂ = argmax
θ∈Θ

ℓ(θ),

where Θ denotes the parameter space of θ. Maximum likeli-

hood estimation (for Gaussian processes) is generally asymp-

totically efficient, and a well-behaved procedure in the time

series setting [22, p.27].

B. The Whittle Likelihood for Bivariate Processes

Computation of the matrix inverse and determinant in (32) is

computationally expensive, with complexity typically scaling

as O(N2) for stationary regularly-sampled processes (and

O(N3) more generally), where N is the length of the signal.
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A standard technique to approximating (32) is the Whittle

likelihood [23]. This estimation technique approximates the

time-domain log-likelihood function in the frequency domain,

which results in improved O(N logN) computational com-

plexity. For bivariate signals, we first define the bivariate

Discrete Fourier Transform (DFT) vector as

JB(ω) =

[
JX(ω)
JY (ω)

]
=

√
∆

N

N∑

t=1

[
Xt

Yt

]
e−iωt∆,

where ∆ > 0 denotes the length of the sampling interval. The

standard bivariate Whittle likelihood, once discretized, is given

in [21] by

ℓW (θ)
C
=

− 1

2

∑

ω∈Ω

[
log |SB(ω; θ)|+ JH

B(ω)S
−1
B (ω; θ)JB(ω)

]
, (33)

where the subscript “W” stands for “Whittle,” SB(ω) is

as defined in (3), and Ω is the set of discrete Fourier

frequencies: 2π
N∆(−⌈N/2⌉+1, . . . ,−1, 0, 1, . . . , ⌊N/2⌋). The

optimal parameter choice for the Whittle likelihood is made

by maximizing

θ̂(W ) = argmax
θ∈Θ

ℓW (θ).

This procedure is O(N logN) because JB(ω) can be com-

puted using a Fast Fourier Transform (FFT), the summation

in (33) is over O(N) frequencies, and the matrix inverse of

SB(ω; θ) now involves a 2×2 matrix, instead of the 2N×2N
covariance matrix in (32).

It is known that the log-likelihood function ℓW (θ) given

in (33) approximates the bivariate log-likelihood function ℓ(θ)
given in (32), but in general θ̂(W ) 6= θ̂. The quality of

the approximation (see [22]) depends on properties of the

spectrum (as is clear from the results of [24]). The difference

between the two objective functions specified by (32) and (33)

can be bounded, both in terms of mean and variance [22,

Thm 5.2], and the rates achieved asymptotically in estimation

using the Whittle likelihood is established by [22, Thm 5.5].

Asymptotically, the same rates of convergence (
√
N ) are

achieved for the Whittle and standard log-likelihood.

C. The Whittle Likelihood for Complex-Valued Processes

The Whittle likelihood for complex-valued processes has an

identical form to the Whittle likelihood for bivariate processes,

as is now shown. To find its form, we express (33) in terms of

Z ≡ X+iY . We start by defining the DFT for complex-valued

processes given by

JC(ω) =

[
JZ(ω)
JZ∗(ω)

]
=

√
∆

N

N∑

t=1

[
Zt

Z∗
t

]
e−iωt∆.

There is a simple linear relationship between the DFTs JC(ω)
and JB(ω)

JC(ω) =
√
2TJB(ω), (34)

where T is the unitary matrix defined in (13). We then

substitute (34) and (16) into (33) such that

ℓW (θ)
C
= −

∑

ω∈Ω

[
log

∣∣∣∣
1

2
T HSC(ω; θ)T

∣∣∣∣

+JH

C(ω)
T√
2

{
1

2
T HSC(ω; θ)T

}−1
T H

√
2
JC(ω)

]

C
= −1

2

∑

ω∈Ω

[
log |SC(ω; θ)|+ JH

C(ω)S
−1
C (ω; θ)JC(ω)

]
,

(35)

and this objective function is thus identical in appearance to

the one provided in (33). This result holds because [Z Z∗]T

is a scaled unitary transformation of [X Y ]T , and would still

hold if any scaled unitary matrix were substituted for T .

We note that for proper signals, when RZZ(ω) = 0, this

log-likelihood function takes the simplified form

ℓW (θ)
C
= −

∑

ω∈Ω

[
log{SZZ(ω; θ)}+

ŜZZ(ω)

SZZ(ω; θ)

]
, (36)

where ŜZZ(ω) = |JZ(ω)|2 is the periodogram of the vector

Z . This form occurs because the off-diagonal elements of

SC vanish, while the two main diagonal terms contribute

identically, thus removing the factor of 1/2 from (35). The

log-likelihood function (36) has a recognizable form which

is similar to the Whittle likelihood for real-valued signals.

In general however, the complementary spectrum must be

considered and the form of (35) must be adopted.

D. The Whittle Likelihood for Rotary Components

We find the Whittle likelihood for rotary components Z+

and Z− takes a slightly different form. We start by defining

the rotary DFT vector by

J±(ω) =

[
J+(ω)
J−(ω)

]
= U(ω)

[
JZ(ω)
JZ(−ω)

]
, (37)

where the scalar function U(ω) is given in (19). It then

follows from (23) that (35) can be expressed in terms of rotary

components by

ℓW (θ)
C
= −

∑

ω∈Ω+

[
log |S±(ω; θ)|+ JH

±(ω)S
−1
± (ω; θ)J±(ω)

]
,

(38)

where S±(ω; θ) is defined as in (22). The summation only

includes the frequencies ω ∈ Ω+ where Ω+ is the set of pos-

itive discrete Fourier frequencies: 2π
N∆(1, . . . , ⌊N/2⌋). This is

because S± vanishes for negative frequencies, which removes

the need for the factor of 1/2 that accounts for the double-

counting of contributions to the other two Whittle likelihood

functions ((33) and (35)) at positive and negative frequencies.

These multiplicative factors do not affect the optimization of

the log-likelihood function, but are important when performing

generalized likelihood ratio tests, as we shall demonstrate in

Section V-B. This form of the log-likelihood function allows

the direct implementation and estimation of rotary coherence

models specified in Section III-B, such as (31); and we

therefore use (38) in our practical example in Section VI.
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The Whittle likelihood for rotary components does not

require the observed signal Z to be explicitly split into rotary

components; instead this split is performed implicitly from

the definition of J±(ω) in (37). If one does wish to obtain the

analytic and conjugate analytic time series from Z then this

can be done through discrete Hilbert transforms (see also [25])
[

Z+

(Z−)∗

]
≡ 1√

2
T

[
Z
HZ

]
=

1

2

[
(X −HY ) + i(Y +HX)
(X +HY ) + i(Y −HX)

]
,

with HZ denoting the discrete Hilbert transform of Z , and

similarly for X and Y . The vectors Z+ and Z− are not direct

samples from the theoretical processes Z+(t) and Z−(t),
but are instead discrete approximations to the continuous-

time Hilbert transforms, rather like how the discrete Fourier

transform is related to the Fourier transform.

Note that the frequency ω = 0 is not included in Ω+. This

occurs because the rotary DFT (37) is split evenly between the

components at ω = 0, therefore the rotary coherency cannot be

estimated at this frequency. This is unlikely to be a substantial

drawback in practice, as the zero-frequency content of the

signal is lost whenever the mean of the signal is removed

prior to analysis, such that there is no contribution to the

log-likelihood function at this frequency in any case. If it

is important to include the zero-frequency component in the

model, and the amplitude of the signal at this frequency is

appreciably greater than zero, then the contribution to the log-

likelihood function at this frequency can be added into (38)

by taking the zero frequency contribution from (33) or (35).

Finally, (33), (35), or (38) can be combined with procedures

to reduce known bias effects of the Whittle likelihood with

moderate sample sizes [24]. These procedures include tapering

the signal, for example with a cosine or Slepian taper [26];

or by using the de-biased Whittle likelihood, proposed in [27]

for real-valued signals. It has been observed that the bias re-

ductions in these methods are often still significant for sample

sizes of the order of 1,000 observed points, particularly with

processes whose spectral densities are hard to approximate

because of leakage and aliasing effects [28].

V. STATISTICAL PROCEDURES FOR COMPLEX-VALUED

AND ROTARY SIGNALS

In this section we discuss several useful practical proce-

dures when stochastically modeling pairs of signals using the

complex-valued or rotary representation.

A. Semi-parametric modeling and estimation

Commonly signals are acquired to be both low-pass filtered

and notch filtered [29] before digitized, thus missing a range of

frequencies. In other application areas, the proposed paramet-

ric model only fits over a range of frequencies [15], [30]–[34].

In these instances

S±(ω) =

{
S±(ω; θ) ω ∈ ΩS

S±(ω) ω /∈ ΩS ,
(39)

where ΩS is the range of frequencies in which S±(ω) can be

modeled parametrically from the data.

For all such instances it is not suitable to infer the pa-

rameters of the generating mechanism of the continuous time

process using (35) or (38) when any of the Fourier frequencies
2π
N∆(1, . . . , ⌊N/2⌋) 6∈ ΩS . The log-likelihood function for θ

in (38) should instead be restricted to the Fourier frequencies

ω ∈ ΩS such that

ℓW (θ)
C
= −

∑

ω∈ΩS

[
log |S±(ω; θ)|+ JH

±(ω)S
−1
± (ω; θ)J±(ω)

]
,

(40)

and equivalently with (35). In fact, for the case of [35] the

optimal number of frequencies to use in estimation can be

determined and is not ∼ N but rather scales as ∼ N4/5. In

general we would expect the precision of parameter estimates

to scale as |ΩS |−1/2, where |ΩS | denotes the number of

Fourier frequencies contained in ΩS , thus loosing in precision

for the reduced bias.

This means that only the frequencies used in the log-

likelihood summation determine the parameter estimates, and

all other sampled frequencies are excluded. In such in-

stances the resulting parameter estimation procedure is semi-

parametric [16]. For set problems, such as that treated in [32],

[35], the subset can be determined analytically prior to anal-

ysis. Sometimes high frequencies will be omitted to account

for sampling errors such as measurement noise. This effect

is well-documented in econometrics, finance and geostatis-

tics [36], [37], and while noise often affects all frequencies

equally, the signal is usually concentrated at low-frequencies.

Additionally, effects due to sampling are sometimes stronger

in their contamination of higher frequencies [38].

We can also use the semi-parametric approach to model

only one of the rotary components, Z+(t) or Z−(t), akin

to modeling only one side of the spectrum in the complex

representation. This can be performed, for instance, when the

physical process of interest is known to only spin in one

direction for a given signal. This can simplify analysis when

one side of the spectrum is known to be contaminated by

nuisance effects [34], and while excluding these frequencies

will increase variance, the bias will be decreased by a more

significant amount, thus reducing overall estimation error.

B. Hypothesis testing for impropriety

In Section III-B we specified models for the coherency be-

tween the rotary components Z+(t) and Z−(t). We may wish

to test a proposed model for coherency against the simpler

scenario where ρ±(ω) = 0 for all ω in (30). This hypothesis

corresponds to there being no relationship between the positive

rotating and negative rotating phasors. We note from Table I

that this hypothesis is not equivalent to SXY (ω) = 0; rather,

a process with zero rotary cross-spectra, S+−(ω) = 0, is

equivalent to a proper process, RZZ(ω) = 0 for all ω 6= 0.

This is a deliberate and convenient consequence of the way we

have constructed Z+(t) and Z−(t) to both be analytic. Testing

for impropriety in the time domain is then equivalent to testing

for a non-zero cross-spectrum between rotary components in

the frequency domain.

There are many tests for impropriety using data sets of

multiple replicates of complex-valued vectors, see for example
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[6], [39]–[42]. We note that these are non-parametric tests

in general requiring replicated complex-valued vectors. Here,

by contrast, we have a simple parametric time series model

suitable for a single time series, and will derive a test statistic

for this scenario.

Given a chosen model for S++(ω) and S−−(ω), we esti-

mate the coherency structure by specifying a parametric model

for ρ±(ω) in (30). We may however prefer to use the simpler

model where ρ±(ω) = 0, such that S+−(ω) = 0. We can

make use of the parametric model—in combination with the

Whittle likelihood for complex-valued signals—to perform

a generalized likelihood ratio test to check for evidence if

ρ±(ω) 6= 0 such that S+−(ω) 6= 0. Specifically, this is done

by computing the generalized likelihood ratio test statistic

W = 2
[
ℓW (θ̂1)− ℓW (θ̂0)

]
, (41)

where θ̂1 includes non-zero estimates for the coherency

ρ±(ω), while for θ̂0, ρ̂+−(ω) = 0 for all ω. The estimators θ̂1
and θ̂0 are obtained by maximizing (38). We assume that the

full model with non-zero coherence has p extra parameters

that are not linearly dependent. For example, in the case

of the coherency structure proposed in (27) and (29), then

p = r + l+ 1. Whereas in (31) if we set a1 = 0 for example,

such that we have a fixed constant for ρ±(ω) when ω < ω0,

then we have p = 1.

In more generality, if we use the time domain bivariate log-

likelihood function of (32) in (41), then from standard likeli-

hood theory, the test statistic W is asymptotically distributed

according to a χ2
p distribution with degrees of freedom equal to

the number of extra parameters p in the alternative hypothesis

versus the null. In Appendix A, we prove that the Whittle

likelihood for complex signals also asymptotically yields a

test statistic with a χ2
p distribution under the null, for special

cases where the rotary spectra are equal in magnitude across

frequency, but possibly correlated with each other such that

the process is improper.

C. Model choice

In many practical scenarios the most appropriate choice

for a model, and the corresponding number of parameters,

is unknown a priori. When it is possible to define a model

such that possible candidate models are nested—that is, with

simpler models being recovered from a more complete model

by setting certain parameters to constants—then it is possible

to apply the method of model choice [43]. In this section, we

provide the correct form of various model choice procedures

for complex-valued signals.

The Akaike Information Criterion (AIC) is a model choice

procedure that can be used, for example, to find the most

appropriate choice of q1 and q2 for a range of ARMA(q1, q2)
processes [44]. Alternatively, the AIC can be used to select the

order of the coherency models proposed in (26) or (27). For

complex-valued signals, the AIC can be closely approximated

in the frequency domain by using the Whittle likelihood to

approximate the time-domain log-likelihood, and combining

this with a model penalization parameter as in [44] it follows

that it takes the same form as for real-valued signals

AIC(θ̂) = −2ℓ(θ̂) + 2q ≈ −2ℓW (θ̂(W )) + 2q,

where q is the number of parameters in the model. The model

with the smallest AIC value is then selected.

For small sample sizes, it is often recommended to use a

correction to the AIC known as the AICC [44], which for

complex-valued signals is given by

AICC(θ̂) = −2ℓ(θ̂) +
4qN

2N − q − 1

≈ −2ℓW (θ̂(W )) +
4qN

2N − q − 1
, (42)

which converges to the AIC for large sample sizes. The

correction uses 2N (rather than N as would be done for real-

valued signals), as there are 2N degrees of freedom in a length

N complex-valued signal. In the case of semi-parametric

estimation as discussed in Section V-A, (42) should not be

used in this exact form, as the sample-size correction needs

to take account of degrees of freedom in the data not used in

the estimation. We instead replace N by |ΩS | in (42), which

is the number of Fourier frequencies in ΩS in (40).

When a tapered spectral estimate is used in the Whittle

likelihood, then the degrees of freedom are further reduced

by the correlation induced in neighboring Fourier frequencies

by the taper [28]. This loss of resolution is also known as

narrowband blurring, in contrast to the broadband blurring

which is attributed to the leakage of the Fejér kernel in the

periodogram for example. Without tapering, nominally each

pair of Fourier coefficients, spaced 1/(N∆) apart, are uncor-

related; however, with tapering, coefficients spaced γ/(N∆)
apart are approximately uncorrelated, where γ > 1 is some

constant reflecting the implicit bandwidth of frequency-domain

smoothing. We must then further reduce N (or |ΩS | for semi-

parametric estimation) by a factor of γ in the AICC, which can

be computed by Fourier transforming the taper onto a fine grid

and then finding the frequency width where the transformed

sequence is only correlated below some specified threshold.

VI. APPLICATION TO TURBULENT FLOW DATA

In this section we present an application of the modeling

and estimation methods we have developed for bivariate and

complex-valued signals. All results can be exactly reproduced

using MATLAB code freely downloadable from http://

ucl.ac.uk/statistics/research/spg/software,

which also includes a technical description of how the

turbulent flow data is numerically generated. The numerical

simulation can be reproduced using software available at

http://jeffreyearly.com/numerical-models/

We test our modeling and estimation procedures on data

obtained from quasi-geostrophic turbulent flow simulations.

Specifically we track the spatial trajectories of 256 particles

over time from two sets of numerical experiments, snapshots

of which are displayed in Fig. 2. Here trajectories of particles

are computed from the time-varying velocity fields associated

with quasi-steady state forced-dissipative two-dimensional
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turbulence simulations under both isotropic (f -plane) and

anisotropic (β-plane) dynamics. Such simulations are standard

in oceanography, see e.g. [45] for details.

We represent the velocities of the Lagrangian trajectories as

complex-valued signals, which we denote as z = u+ iv. The

time between observations of the signal is set to 1 day. We

model z as following a Matérn process, as motivated in [46],

which in the isotropic case has rotary spectra defined by

S++(ω) = S−−(ω) =
φ2

(ω2 + α2)ν+1/2
, ω > 0, (43)

where ω is given in cycles per day. The smoothness parameter

ν > 0 defines the Hausdorff dimension of the graph—equal to

max(1, 2−ν)—as well as the degree of differentiability of the

process. The range parameter α > 0 is a timescale parameter,

where 1/α can be referred to as the correlation timescale, and

φ2 > 0 defines the magnitude of the variability of the process.

The motivation for using the Matérn for turbulence velocities

is based on its properties: both the Matérn and Lagrangian

trajectories such as these exhibit close to power law behavior

at mid-to-high frequencies (see also the review paper of [47]).

Moreover, in contrast to fractional Brownian Motion, the

power law behavior of a Matérn breaks at low frequency

making the process stationary (and not self-similar)—this is

again consistent with the discussions of [46], [47]. We choose

to model the two rotary components as Matérn processes with

the same parameters, as in this experiment there is no preferred

or dominant direction of rotation of the particles, such that the

rotary spectra are expected to be symmetric.

We account for potential anisotropy by modeling the rotary

coherency. We employ the model of (31) setting a0 = 1, such

that the coherency approaches unity as ω approaches zero.

The justification for this is physical, as at long timescales

we expect the east-west bands in the left panel of Fig. 2

to be entirely dominant, which is consistent with a fully

improper/anisotropic model with rotary coherency equal to

unity. This leads to the following 1-parameter model

S+−(ω) = ρ±(ω) [S++(ω)S−−(ω)]
1/2

ρ±(ω) = max(0, 1− cω), ω ≥ 0, (44)

where c ∈ R
+. The choice of compactly supporting ρ±(ω)—

as discussed in Section III-B—is also physical, where isotropic

behavior is expected at high frequencies beyond some physical

timescale. Finally, as also discussed in Section III-B, we

ignore the group delay and model ρ± as real-valued, which

is reasonable if the signal components, in this case u and

v, are uncorrelated with each other. To check this, in Fig. 3

we display the normalized cross-covariance between u and v
averaged across 256 trajectories (each of length 1,001) from

the numerical model, where it can be seen that it is reasonable

to make the assumption that u and v are uncorrelated, as the

estimated correlation never exceeds 0.025 at any lag.

The full stochastic model therefore has four parameters:

three for the Matérn process, and one to specify the rotary

coherency. The proposed model is a valid Gaussian process as

S++(ω) ≥ 0, S−−(ω) ≥ 0, |ρ±(ω)| ≤ 1 for all ω > 0,

and the spectral matrix S±(ω) is integrable, as discussed

in Section III-B. The choice of the “triangle function” for

the coherency in (44) naturally defines a timescale at which

anisotropy begins, as the coherence is zero at ω = 1/c,
corresponding to a period of 2πc, and then increases linearly

as frequency decreases until at long timescales all energy

is in the dominant Cartesian component, which is u. The

model of (44) defines the rotary coherency and its param-

eter can be estimated, together with the parameters of the

Matérn process (43), using the Whittle likelihood for rotary

components as provided in Section IV-D. The parameters in

the optimization are initialized using least squares, namely

starting from (43) we first assume α = 0 and rewrite

logS++(ω) = logφ2 − (2ν + 1) log(ω), (45)

and regress the observed log-periodogram log Ŝ++(ω) over

mid-range frequencies to make a least squares fit of ν and

φ. The parameter α is then set to a mid-range value of 0.1

cycles per day, and c is set by finding the lowest frequency at

which the estimated rotary coherency from multi-taper spectral

estimates is zero. More details can be found in the online code.

In Fig. 4, we display the Whittle likelihood fit to an indi-

vidual signal (of length 1,001) obtained from the anisotropic

numerical simulation shown in the left panel of Fig. 2. Because

of the steep energy roll-off, we have used a semi-parametric

fit by excluding 60% of the frequency range, and thus only

modeling up to 0.2 cycles per day, where the Nyquist is 0.5

cycles per day. We have also excluded the zero frequency from

the fit, as we have removed the sample mean, and hence there

is no spectral content at ω = 0. As the spectral slopes are steep,

we use the tapered version of the Whittle likelihood [24], as

discussed in Section IV. Specifically we estimate the parame-

ters of the modeled spectra using non-parametric multi-taper

spectral estimates obtained from discrete prolate spheroidal

sequences (dpss) [48], otherwise known as Slepian tapers, with

bandwidth parameter set to 3.

Analyzing the fits in Fig. 4, it can be seen that the extra

parameter in our model has succinctly captured the difference

between the flow in each Cartesian component (u and v) at

low frequencies. Thus the Matérn model of (43), plus rotary

coherency as modeled in (44), appears to generally be a good

fit for this complex-valued signal. We note that the estimated

rotary coherency from multi-tapers is a noisy estimate, as com-

pared with the estimate of the rotary power spectra contained

in SZZ(ω). This is expected, particularly at higher frequencies,

as the estimated coherency is measured from an individual

signal, and at higher frequencies is often the ratio of two

small but noisy quantities. Despite this, the parametric model

for rotary coherency appears to have obtained a reasonable

estimate, and captured the frequency-dependent structure of

the coherency, particularly at low frequencies.

To put our choice of model under further scrutiny, we fit this

4-parameter anisotropic Matérn model to all of the 256 trajec-

tories from the anisotropic experiment and compare the value

of the log-likelihood function versus the null hypothesis of a

three-parameter isotropic Matérn model, in which the rotary

coherency is identically zero (ρ±(ω) = 0). We can then use a

generalized likelihood ratio test, as described in Section V-B,

to test for evidence of anisotropy. For consistency, we also

repeat this procedure with the same number of trajectories (of
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Fig. 2. Snapshots from numerical experiments for anisotropic (left) and isotropic (right) two-dimensional turbulence. The field presented is relative vorticity,
the curl of the velocity vector field at each point. East-west bands are apparent in the anisotropic simulation that do not appear in the isotropic simulation.
The color scale shows the Rossby number, a non-dimensional measure of the vorticity strength.
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Fig. 3. The average autocorrelation of u and v across all observable lags
of the signals analyzed from the anisotropic experiment displayed in Fig. 2
(left). The estimated autocorrelation sequence has been averaged across the
256 signals analyzed in Section VI. The autocorrelations are estimated using
the biased autocovariance estimator to reduce variance, where each lag is
normalized by N rather than N − τ .

the same length) from the isotropic experiment in the right

panel of Fig. 2, to see if we correctly do not reject the null in

such cases. While the null model is nested within the alternate

model, the null value of the parameter c is at the boundary of

its range, requiring adjustments to calculate the critical value

for the test statistic. Therefore, we compute 95% confidence

intervals for our test statistic by bootstrapping a number of

isotropic simulated Matérns (with parameters similar to those

estimated in Fig. 4), rather than using a chi-squared statistic

as derived in the Appendix.

The set of test statistics, calculated from (41), from both ex-

periments is displayed in Fig. 5(a). The statistics are compared

with the 95% one-sided bootstrapped confidence interval. The

isotropic model is correctly always rejected for the anisotropic

data and rejected only 16 times for the isotropic data (6.25%

of the 256 observed signals). This is in broad agreement with

a type I error level set to 5%. In experimental rather than

controlled data we would account for multiple testing issues

if performing this test over multiple trials, applying techniques

such as False Discovery Rates (FDR).

The timescale associated with the observed anisotropy is

of interest. As the signals were observed from a numerical

model, we can assess which frequencies are associated with

the anisotropic behavior from the settings. A spatial scale

known as the Rhines scale [49], well-known in oceanography,

determines the scale at which the transition to anisotropic

large-scale behavior begins; this can be converted to a temporal

scale through a division by the root-mean-square velocity. This

gives a time-scale of approximately 23 days for the anisotropic

experiment. Fig. 5(b) provides estimates of this timescale for

each signal from our parametric model, based on the estimate

of the frequency at which the rotary coherence becomes zero,

which is 2πc. The median value is found to be 24.2 days,

consistent with the 23 days computed from the Rhines scale.

This apparent ability to infer a key spatial scale based solely

on the frequency structure of time signals obtained Lagrangian

trajectories is an interesting result showing the power of

this method. Translating the temporal content garnered from

multiple signals using our methods, to local spatial summaries,

is an important avenue for future work.

VII. CONCLUSIONS

In this paper we have proposed a framework for stochastic

modeling and estimation of stationary bivariate of complex-

valued signals. We have shown the power of separating out

behavior in frequency using the rotary components, and mod-

eling different ranges of frequencies separately. This permitted

us to handle a plethora of different effects directly in the fre-

quency domain, and introduce new signal characteristics. For

example, we demonstrated how our techniques can be used to

effectively capture anisotropy in oceanographic flow models.

In addition, we have proposed appropriate computationally-

efficient parameter estimation procedures by extending the
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Fig. 4. Spectra from the isotropic and anisotropic Matérn model, with parameters estimated from the Whittle likelihood, plotted against non-parametric
multi-taper spectral estimates from a complex-valued velocity signal observed from the anisotropic numerical simulation shown in the left panel of Fig. 2.
Panel (a) is the Matérn fit to the power spectrum SZZ (ω), which is identical for the isotropic and anisotropic models. Panel (b) displays the fit to the
anisotropic model of ρ±(ω) defined in (44), where the isotropic model is zero at all frequencies by definition. Panels (c) and (d) display the anisotropic and
isotropic model fits to the power spectrum of the velocities in the u and v direction only. The multi-tapers used are the discrete prolate spheroidal sequences
(dpss) with bandwidth parameter set to 3.

Fig. 5. (a) generalized likelihood ratio test statistics computed from 256
isotropic and anisotropic trajectories where the first column contains 240
values. The 95% confidence interval is obtained from bootstrapping. (b)
anisotropy timescale estimates 2πĉ from the anisotropic trajectories.

Whittle likelihood objective function to complex-valued and

rotary signals.

There remain significant challenges in the frequency domain

analysis of bivariate and complex-valued signals. A key chal-

lenge is to extend our modeling framework to nonstationary

and higher order processes, where advances in non-parametric

modeling have been made in [6]. The main application chal-

lenge is to continue building models from our framework for

use in a wide range of physical applications, as we have

performed recently in [14] with seismic data signals.

APPENDIX A

HYPOTHESIS TESTING FOR IMPROPRIETY - PROOF OF

χ2
p-DISTRIBUTED TEST STATISTIC

Hypothesis Test Set-Up

We shall consider the special cases of

S
(0)
± (ω; θ0) = S (ω; θM ) ·

[
1 0
0 1

]
, vs

S
(1)
± (ω; θ1) = S (ω; θM ) ·

[
1 ρ (ω;ψ)

ρ (ω;ψ) 1

]
.

Where the null and alternate parameters are denoted as

θ0 =

[
θM
ψo

]
, vs θ1 =

[
θM
ψ

]
.

We shall now develop a test for the null hypothesis of

H0 : S± (ω) = S
(0)
± (ω; θ0) , vs

H1 : S± (ω) = S
(1)
± (ω; θ1) .
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We note that the hypotheses are nested, and that makes

standard theory possible—however this is not a necessary

requirement [43]. Assume that θM is an l-vector and ψ is

a p-vector.

Notation for Quadratic Approximations

Let us first define the Fisher information matrix

F(θ1) =

[
F̃(θ1) F×(θ1)
FT

×(θ1) F◦(θ1)

]
,

where we have decomposed F(θ1) into 4 blocks to simplify

calculations: F̃(θ1) contains the negative of the expected

mixed second derivatives of the log-likelihood function with

respect to the parameters in θM , F×(θ1) is the matrix with

entries of the negative of the expectation of the second cross-

derivatives between θM and ψ, and finally F◦(θ1) contains

the negative of the expectation of the mixed second derivatives

of the log-likelihood function with respect to the parameters

in ψ. In parallel we define the observed Fisher information

matrices as F , which has been decomposed into F̃ , containing

the negative of mixed second derivatives of the log-likelihood

function with respect to the parameters in θM , F×(θ1) is the

matrix with entries of the negative of second cross-derivatives

between θM and ψ, and finally F◦(θ1) contains the negative

of mixed second derivatives of the log-likelihood function with

respect to the parameters in ψ. Note that the observed Fisher

information, and its expectation, as well as the corresponding

submatrices are all a function of θ1 = [θM ψ]T , where we

recall also that θ0 = [θM ψo]
T . We now also write

θ̂0 =
[
θ̂0M ψo

]T
, and θ̂1 =

[
θ̂1M ψ̂

]T
,

for the parameter values that maximize (38), with the con-

straints of H0, or without such constraints respectively.

Properties of the Whittle Estimators

We have already assumed that F (θ0) is a continuous

function of θ0. We note that under the null θ̂0
P→ θ0, and

θ̂1
P→ θ0, from Theorem 5.4 of [22]. Thus, with N|Ω| denoting

the cardinality of Ω, we rewrite the observed Fisher matrix

evaluated at a point θ′0 squeezed between θ̂1 and the true

parameter value as

F (θ′0) = N|Ω|F (θ0) +N|Ω|δF (θ0) ,

for

δF (θ0) = N−1
|Ω|F (θ′0)−F (θ0) .

Using the continuous mapping (or Mann-Wald) theorem, it

follows as θ̂1
P→ θ0,

E ‖δF (θ0) ‖2F = o(1),

where o(1) is standard notation for a shrinking quantity.

We can therefore deduce ‖δF (θ0) ‖2F is oP (1). This is the

definition of δF (θ0) = oP (1), with the chosen matrix norm

being the Frobenius norm. As δF (θ0) is of finite size, any

sensibly chosen matrix norm, such as the trace norm will be

equivalent in order to the Frobenius norm. We therefore may

write

N−1
|Ω|F (θ′0) = F (θ0) {Il+p + oP (1)}.

The same argument holds for the reduced system excluding

ψ. Therefore for θ∗0 between θ0 and θ̂0

N−1
|Ω| F̃ (θ∗0) = F̃ (θ0) {Il + oP (1)}.

We shall now link the parameter estimates to the score. Write

∇ = (∂/∂θ11 . . . ∂/∂θ1l+p)
T for the gradient, and write

∇M = (∂/∂θ01 . . . ∂/∂θ0l)
T for the gradient under the null

model. We note that performing Taylor series of the score

yields

∇M ℓW

(
θ̂0

)
= ∇M ℓW (θ0)−F̃

([
θ′′0M ψo

]T){
θ̂0M − θ0M

}

∇ℓW

(
θ̂1

)
= ∇ℓW (θ0)− F

(
θ
†
0

){
θ̂1 − θ0

}
,

as we are using a Lagrange form of the Taylor series where

the remainder θ′′0M is squeezed between θ0M and θ̂0M , as

θ̂0M
P→ θ0M , and θ

†
0 is squeezed between θ0 and θ̂1, as θ̂1

P→
θ0, under the null. This naturally produces a representation of

θ̂0M − θ0M =
[
F̃ (θ0) + oP (1)

]−1

N−1
|Ω|∇M ℓW (θ0) , (46)

as well as,

θ̂1 − θ0 = [F (θ0) + oP (1)]
−1

N−1
|Ω|∇ℓW (θ0) . (47)

Calculating the difference between the two estimators for θM
from (46) and (47) we get that
(
θ̂1M − θ̂0M

0

)
=

[
Il 0

0 0

]
[F + oP (1)]

−1
N−1

|Ω|∇ℓW (θ0)

−N−1
|Ω|

[{
F̃ + oP (1)

}−1

0

0 0

]
∇ℓW (θ0)

=

{
−
[
F̃−1

0

0 0

]
+

[
Il 0

0 0

]
F−1

}

F
(
θ̂1 − θ0

)
{Il+p + oP (1)}

=

([
Il 0

0 0

]
−
[
Il F̃−1F×

0 0

]){
θ̂1 − θ0

}

× {Il+p + oP (1)} .
Note that all matrices and submatrices of the Fisher informa-

tion above should be evaluated at the value θ0. This has been

omitted for brevity. This expression can then be simplified to

θ̂1M = θ̂0M − F̃−1F×

(
ψ̂ −ψo

)
{Ip + oP (1)} . (48)

Distribution of the Quadratic Form

To determine the distribution of the likelihood ratio statistic

we shall assume that 1) The process under observation is a

Gaussian stationary process possessing a continuous spectrum,

2) θ0 lies in an open ball in the parameter set Θ and 3) the

spectrum of the process satisfies certain regularity conditions

which will be stated more carefully later in this section. It is

not a necessary assumption that the process is Gaussian (see

for example work by [50]), but it is sufficient and easy to state.
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We note that for the example in section VI the null value of the

parameter is not in an open set but at the boundary, explaining

why we use the parametric bootstrap.

We now return to the quantity W from (41), and implement

an additional Taylor series for W , yet again with the Lagrange

form of the remainder (assume θ∗0 lies in a ball centered at θ̂1
less than θ̂0 − θ̂1 away from the center), an expansion that is

possible because θ0 lies in an open ball in the parameter set

Θ. Note

ℓW

(
θ̂0

)
= ℓW

(
θ̂1

)
+
(
θ̂0 − θ̂1

)T

∇ℓW

(
θ̂1

)

− 1

2
·
(
θ̂0 − θ̂1

)T

F (θ∗0)
(
θ̂0 − θ̂1

)
. (49)

We can use that ∇ℓW

(
θ̂1

)
= 0 and then evaluate the variable

W defined in (41)

W = 2ℓW

(
θ̂1

)
− 2ℓW

(
θ̂0

)

= 2ℓW

(
θ̂1

)
− 2

[
ℓW

(
θ̂1

)

−1

2
·
(
θ̂0 − θ̂1

)T

F (θ∗0)
(
θ̂0 − θ̂1

)]

= N|Ω|

(
θ̂0 − θ̂1

)T

F (θ0)
(
θ̂0 − θ̂1

)
(Il+p + oP (1)),

as θ∗0 is squeezed between θ̂0 and θ̂1, again using the

continuous mapping theorem. Substituting in (48) then yields

W = N|Ω|

[
−F̃−1F×

(
ψ̂ −ψo

)

ψ̂ −ψo

]T

F (θ0)

×
[
−F̃−1F×

(
ψ̂ −ψo

)

ψ̂ −ψo

]
{1 + oP (1)}

= N|Ω|

(
ψ̂ −ψo

)T [
−FT

×F̃−1
Ip

] [ F̃ F×

FT
× F◦

]

×
[
−F̃−1F×

Ip

](
ψ̂ −ψo

)
{1 + oP (1)}

= N|Ω|

(
ψ̂ −ψo

)T

×
[
−FT

×F̃−1F̃ + FT
× −FT

×F̃−1F× + F◦

]

×
[
−F̃−1F×

Ip

](
ψ̂ −ψo

)
{1 + oP (1)}

= N|Ω|

(
ψ̂ −ψo

)T [
F◦ −FT

×F̃−1F×

] (
ψ̂ −ψo

)

× {1 + oP (1)} .
The final step comes from observing that from [22, Theorem

5.5], writing G = F−1, and partitioning the matrix into

G =

[
G1 G2

GT
2 G3

]
,

we arrive at

N
1/2
|Ω|

{
ψ̂ −ψo

}
∼ N (0,G3) . (50)

For [22, Theorem 5.5] to hold, we need to assume that the

observed process is Gaussian, and has a spectrum S(ω), which

for two distinct parameter values are not equal for almost all

frequencies, and the inverse spectrum as well as its derivatives

with respect to all parameter components are continuous

both in frequency and parameter components. Normality can

be derived under other assumptions, see e.g. [50], but this

simplifies the statement of the result.

Note that when giving the normality result from [22, Theo-

rem 5.5] we would use ψ rather than ψo, but as the distribution

is determined under the assumption that the null holds, we can

replace ψ by ψo. Noting that

F◦ −FT
× F̃−1F× = G−1

3 , (51)

we therefore directly arrive at the result by defining the new

random vector

Z1 = N
1/2
|Ω|

(
F◦ −FT

×F̃−1F×

)1/2 (
ψ̂ −ψo

)
, (52)

where we may determine that asymptotically

Z1 = G−1/2
3 N

1/2
|Ω|

(
ψ̂ − ψo

)
∼ N (0, Ip) ,

from which the asymptotic result ZT
1 Z1 ∼ χ2

p follows.
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