53,348 research outputs found
Activation barrier scaling and crossover for noise-induced switching in a micromechanical parametric oscillator
We explore fluctuation-induced switching in a parametrically-driven
micromechanical torsional oscillator. The oscillator possesses one, two or
three stable attractors depending on the modulation frequency. Noise induces
transitions between the coexisting attractors. Near the bifurcation points, the
activation barriers are found to have a power law dependence on frequency
detuning with critical exponents that are in agreement with predicted universal
scaling relationships. At large detuning, we observe a crossover to a different
power law dependence with an exponent that is device specific.Comment: 5 pages, 5 figure
Phase transition in the Higgs model of scalar dyons
In the present paper we investigate the phase transition
"Coulomb--confinement" in the Higgs model of abelian scalar dyons -- particles
having both, electric and magnetic , charges. It is shown that by dual
symmetry this theory is equivalent to scalar fields with the effective squared
electric charge e^{*2}=e^2+g^2. But the Dirac relation distinguishes the
electric and magnetic charges of dyons. The following phase transition
couplings are obtained in the one--loop approximation:
\alpha_{crit}=e^2_{crit}/4\pi\approx 0.19,
\tilde\alpha_{crit}=g^2_{crit}/4\pi\approx 1.29 and \alpha^*_{crit}\approx
1.48.Comment: 16 pages, 2 figure
Fluctuation-enhanced frequency mixing in a nonlinear micromechanical oscillator
We study noise-enhanced frequency mixing in an underdamped micromechanical
torsional oscillator. The oscillator is electrostatically driven into
bistability by a strong, periodic voltage at frequency . A second,
weak ac voltage is applied at a frequency close to . Due to
nonlinearity in the system, vibrations occur at both and
. White noise is injected into the excitation, allowing the
system to occasionally overcome the activation barrier and switch between the
two states. At the primary drive frequency where the occupations of the two
states are approximately equal, we observe noise-induced enhancement of the
oscillation amplitudes at both and the down-converted frequency
, in agreement with theoretical predictions. Such enhancement
occurs as a result of the noise-induced interstate transitions becoming
synchronous with the beating between the two driving frequencies.Comment: 4 pages 5 figure
Charge sensing in carbon nanotube quantum dots on microsecond timescales
We report fast, simultaneous charge sensing and transport measurements of
gate-defined carbon nanotube quantum dots. Aluminum radio frequency single
electron transistors (rf-SETs) capacitively coupled to the nanotube dot provide
single-electron charge sensing on microsecond timescales. Simultaneously, rf
reflectometry allows fast measurement of transport through the nanotube dot.
Charge stability diagrams for the nanotube dot in the Coulomb blockade regime
show extended Coulomb diamonds into the high-bias regime, as well as even-odd
filling effects, revealed in charge sensing data.Comment: 4 pages, 4 figure
Monte Carlo simulations of bosonic reaction-diffusion systems
An efficient Monte Carlo simulation method for bosonic reaction-diffusion
systems which are mainly used in the renormalization group (RG) study is
proposed. Using this method, one dimensional bosonic single species
annihilation model is studied and, in turn, the results are compared with RG
calculations. The numerical data are consistent with RG predictions. As a
second application, a bosonic variant of the pair contact process with
diffusion (PCPD) is simulated and shown to share the critical behavior with the
PCPD. The invariance under the Galilean transformation of this boson model is
also checked and discussion about the invariance in conjunction with other
models are in order.Comment: Publishe
Lattice model theory of the equation of state covering the gas, liquid, and solid phases
The three stable states of matter and the corresponding phase transitions were obtained with a single model. Patterned after Lennard-Jones and Devonshires's theory, a simple cubic lattice model containing two fcc sublattices (alpha and beta) is adopted. The interatomic potential is taken to be the Lennard-Jones (6-12) potential. Employing the cluster variation method, the Weiss and the pair approximations on the lattice gas failed to give the correct phase diagrams. Hybrid approximations were devised to describe the lattice term in the free energy. A lattice vibration term corresponding to a free volume correction is included semi-phenomenologically. The combinations of the lattice part and the free volume part yield the three states and the proper phase diagrams. To determine the coexistence regions, the equalities of the pressure and Gibbs free energy per molecule of the coexisting phases were utilized. The ordered branch of the free energy gives rise to the solid phase while the disordered branch yields the gas and liquid phases. It is observed that the triple point and the critical point quantities, the phase diagrams and the coexistence regions plotted are in good agreement with the experimental values and graphs for argon
Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NO_x conditions
We present first-generation and total production yields of glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone from the oxidation of isoprene, methyl vinyl ketone (MVK), and methacrolein (MACR) with OH under high NO_x conditions. Several of these first-generation yields are not included in commonly used chemical mechanisms, such as the Leeds Master Chemical Mechanism (MCM) v. 3.2. The first-generation yield of glyoxal from isoprene was determined to be 2.1 (±0.6)%. Inclusion of first-generation production of glyoxal, glycolaldehyde and hydroxyacetone from isoprene greatly improves performance of an MCM based model during the initial part of the experiments. In order to further improve performance of the MCM based model, higher generation glyoxal production was reduced by lowering the first-generation yield of glyoxal from C5 hydroxycarbonyls. The results suggest that glyoxal production from reaction of OH with isoprene under high NO_x conditions can be approximated by inclusion of a first-generation production term together with secondary production only via glycolaldehyde. Analogously, methylglyoxal production can be approximated by a first-generation production term from isoprene, and secondary production via MVK, MACR and hydroxyacetone. The first-generation yields reported here correspond to less than 5% of the total oxidized yield from isoprene and thus only have a small effect on the fate of isoprene. However, due to the abundance of isoprene, the combination of first-generation yields and reduced higher generation production of glyoxal from C5 hydroxycarbonyls is important for models that include the production of the small organic molecules from isoprene
Analysis of photochemical and dark glyoxal uptake: Implications for SOA formation
The dependence of glyoxal uptake onto deliquesced ammonium sulfate seed aerosol was studied under photochemical (light + hydroxyl radical (OH)) and dark conditions. In this study, the chemical composition of aerosol formed from glyoxal is identical in the presence or absence of OH. In addition, there was no observed OH dependence on either glyoxal uptake or glyoxal-driven aerosol growth for this study. These findings demonstrate that, for the system used here, glyoxal uptake is not affected by the presence of OH. In combination with previous studies, this shows that the exact nature of the type of seed aerosol, in particular the presence of a coating, has a large influence on fast photochemical uptake of glyoxal. Due to the challenge of relating this seed aerosol dependence to ambient conditions, this work highlights the resulting difficulty in quantitatively including SOA formation from glyoxal in models
α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NO_x environments
The gas-phase oxidation of α-pinene produces a large amount of secondary organic aerosol (SOA) in the atmosphere. A number of carboxylic acids, organosulfates and nitrooxy organosulfates associated with α-pinene have been found in field samples and some are used as tracers of α-pinene oxidation. α-pinene reacts readily with OH and O_3 in the atmosphere followed by reactions with both HO_2 and NO. Due to the large number of potential reaction pathways, it can be difficult to determine what conditions lead to SOA. To better understand the SOA yield and chemical composition from low- and high-NO_x OH oxidation of α-pinene, studies were conducted in the Caltech atmospheric chamber under controlled chemical conditions. Experiments used low O_3 concentrations to ensure that OH was the main oxidant and low α-pinene concentrations such that the peroxy radical (RO_2) reacted primarily with either HO_2 under low-NO_x conditions or NO under high-NO_x conditions. SOA yield was suppressed under conditions of high-NO_x. SOA yield under high-NO_x conditions was greater when ammonium sulfate/sulfuric acid seed particles (highly acidic) were present prior to the onset of growth than when ammonium sulfate seed particles (mildly acidic) were present; this dependence was not observed under low-NO_x conditions. When aerosol seed particles were introduced after OH oxidation, allowing for later generation species to be exposed to fresh inorganic seed particles, a number of low-NO_x products partitioned to the highly acidic aerosol. This indicates that the effect of seed acidity and SOA yield might be under-estimated in traditional experiments where aerosol seed particles are introduced prior to oxidation. We also identify the presence of a number of carboxylic acids that are used as tracer compounds of α-pinene oxidation in the field as well as the formation of organosulfates and nitrooxy organosulfates. A number of the carboxylic acids were observed under all conditions, however, pinic and pinonic acid were only observed under low-NO_x conditions. Evidence is provided for particle-phase sulfate esterification of multi-functional alcohols
- …