38 research outputs found

    Fine-grained entanglement loss along renormalization group flows

    Get PDF
    We explore entanglement loss along renormalization group trajectories as a basic quantum information property underlying their irreversibility. This analysis is carried out for the quantum Ising chain as a transverse magnetic field is changed. We consider the ground-state entanglement between a large block of spins and the rest of the chain. Entanglement loss is seen to follow from a rigid reordering, satisfying the majorization relation, of the eigenvalues of the reduced density matrix for the spin block. More generally, our results indicate that it may be possible to prove the irreversibility along RG trajectories from the properties of the vacuum only, without need to study the whole hamiltonian.Comment: 5 pages, 3 figures; minor change

    New discoveries at Woolsey Mound, MC118, northern Gulf of Mexico

    Get PDF
    Woolsey Mound, a 1km-diameter carbonate-gas hydrate complex in the northern Gulf of Mexico, is the site of the Gulf’s only seafloor monitoring station-observatory in its only research reserve, Mississippi Canyon 118. Active venting, outcropping hydrate, and a thriving chemosynthetic community recommend the site for study. Since 2005, the Gulf of Mexico Hydrates Research Consortium has been conducting multidisciplinary studies to 1. Characterize the site, 2. Establish a facility for real-time monitoring-observing of gas hydrates in a natural setting, 3. Study the effects of gas hydrates on seafloor stability, 4. Establish fluid migration routes and estimates of fluid-flux at the site, 5. Establish the interrelationships between the organisms at the vent site and the association-dissociation of hydrates. A variety of novel geological, geophysical, geochemical and biological studies has been designed and conducted, some in survey mode, others in monitoring mode. Geophysical studies involving merging multiple seismic data acquisition systems accompanied by the application of custom processing techniques verify communication of surface features with deep structures. Supporting geological data derive from innovative recovery techniques. Geochemical sensors, used experimentally in survey mode, including aboard an AUV, double as monitoring devices. A suite of pore-fluid sampling devices has returned data that capture change at the site in daily increments; using only noise as an energy source, hydrophones have returned daily fluctuations in physical properties. Ever-expanding capabilities of a custom-ROV have been determined by research needs. Processing of new as well as conventional data via unconventional means has resulted in the discovery of new features…..vents, faults, benthic fauna…..and modification of others including pockmarks, hydrate outcrops, vent activity, and water-column chemical plumes. Though real-time monitoring awaits communications and power link to land, periodic data-collection reveals a carbonate-hydrate mound, part of an immensely complex hydrocarbon system

    A holographic model for the fractional quantum Hall effect

    Full text link
    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an SL(2,Z)-invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: We specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the SL(2,Z) action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.Comment: 86 pages, 16 figures; v.2 references added, typos fixed, improved discussion of ref. [39]; v.3 more references added and typos fixed, several statements clarified, v.4 version accepted for publication in JHE

    Effects of dissipation on quantum phase transitions

    Full text link
    We discuss the effect of dissipation on quantum phase transitions. In particular we concentrate on the Superconductor to Insulator and Quantum-Hall to Insulator transitions. By invoking a phenomenological parameter α\alpha to describe the coupling of the system to a continuum of degrees of freedom representing the dissipative bath, we obtain new phase diagrams for the quantum Hall and superconductor-insulator problems. Our main result is that, in two-dimensions, the metallic phases observed in finite magnetic fields (possibly also strictly zero field) are adiabatically deformable from one to the other. This is plausible, as there is no broken symmetry which differentiates them.Comment: 13 pages, 4 figure

    DUALITY IN THE QUANTUM HALL SYSTEM

    No full text
    corecore