4,582 research outputs found

    Disease Progression Modeling and Prediction through Random Effect Gaussian Processes and Time Transformation

    Get PDF
    The development of statistical approaches for the joint modelling of the temporal changes of imaging, biochemical, and clinical biomarkers is of paramount importance for improving the understanding of neurodegenerative disorders, and for providing a reference for the prediction and quantification of the pathology in unseen individuals. Nonetheless, the use of disease progression models for probabilistic predictions still requires investigation, for example for accounting for missing observations in clinical data, and for accurate uncertainty quantification. We tackle this problem by proposing a novel Gaussian process-based method for the joint modeling of imaging and clinical biomarker progressions from time series of individual observations. The model is formulated to account for individual random effects and time reparameterization, allowing non-parametric estimates of the biomarker evolution, as well as high flexibility in specifying correlation structure, and time transformation models. Thanks to the Bayesian formulation, the model naturally accounts for missing data, and allows for uncertainty quantification in the estimate of evolutions, as well as for probabilistic prediction of disease staging in unseen patients. The experimental results show that the proposed model provides a biologically plausible description of the evolution of Alzheimer's pathology across the whole disease time-span as well as remarkable predictive performance when tested on a large clinical cohort with missing observations.Comment: 13 pages, 2 figure

    Rotationally resolved spectroscopy of (20000) Varuna in the near-infrared

    Full text link
    Models of the escape and retention of volatiles by minor icy objects exclude any presence of volatile ices on the surface of TNOs smaller than ~1000km in diameter at the typical temperature in this region of the solar system, whereas the same models show that water ice is stable on the surface of objects over a wide range of diameters. Collisions and cometary activity have been used to explain the process of surface refreshing of TNOs and Centaurs. These processes can produce surface heterogeneity that can be studied by collecting information at different rotational phases. The aims of this work are to study the surface composition of (20000)Varuna, a TNO with a diameter ~650km and to search for indications of rotational variability. We observed Varuna during two consecutive nights in January 2011 with NICS@TNG obtaining a set of spectra covering the whole rotation period of Varuna. After studying the spectra corresponding to different rotational phases, we did not find any indication of surface variability. In all the spectra, we detect an absorption at 2{\mu}m, suggesting the presence of water ice on the surface. We do not detect any other volatiles on the surface, although the S/N is not high enough to discard their presence. Based on scattering models, we present two possible compositions compatible with our set of data and discuss their implications in the frame of the collisional history of the Kuiper Belt. We find that the most probable composition for the surface of Varuna is a mixture of amorphous silicates, complex organics, and water ice. This composition is compatible with all the materials being primordial. However, our data can also be fitted by models containing up to a 10% of methane ice. For an object with the characteristics of Varuna, this volatile could not be primordial, so an event, such as an energetic impact, would be needed to explain its presence on the surface.Comment: 6 pages, 5 figures, to be published in A&

    Instability of free interfaces in premixed flame propagation

    Get PDF
    In this survey, we are interested in the instability of flame fronts regarded as free interfaces. We successively consider a classical Arrhenius kinetics (thin flame) and a stepwise ignition-tempera ture kinetics (thick flame) with two free interfaces. A general method initially developed for thin flame problems subject to interface jump conditions is proving to be an effective strategy for smoother thick flame systems. It relies on the elimination of the free interface(s) and reduction to a fully nonlinear parabolic problem. The theory of analytic semigroups is a key tool to study the linearized operators
    • …
    corecore