69 research outputs found

    Inverse correlation between IL-7 receptor expression and CD8 T cell exhaustion during persistent antigen stimulation

    Get PDF
    Persistence is a hallmark of infection by viruses such as HIV, hepatitis B virus, hepatitis C virus and LCMV. In the case of LCMV, persistence may often be associated with exhaustion of CD8(+) T cells. We demonstrate here that persistent antigen suppressed IL-7Ralpha expression and this correlated with T cell exhaustion and reduced expression of the anti-apoptotic molecule B cell leukemia/lymphoma 2 (Bcl-2). In contrast, exposure to short-lived antigen only temporarily suppressed IL-7Ralpha expression, failed to induce T cell exhaustion, and primed T cells. Persistent antigen also suppressed IL-7Ralpha expression on primed T cells and this correlated with exhaustion of a previously stable primed T cell population. These findings suggest that antigen longevity regulates T cell fate

    Differences in allergen-induced T cell activation between allergic asthma and rhinitis: Role of CD28, ICOS and CTLA-4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Th2 cell activation and T regulatory cell (Treg) deficiency are key features of allergy. This applies for asthma and rhinitis. However with a same atopic background, some patients will develop rhinitis and asthma, whereas others will display rhinitis only. Co-receptors are pivotal in determining the type of T cell activation, but their role in allergic asthma and rhinitis has not been explored. Our objective was to assess whether allergen-induced T cell activation differs from allergic rhinitis to allergic rhinitis with asthma, and explore the role of ICOS, CD28 and CTLA-4.</p> <p>Methods</p> <p>T cell co-receptor and cytokine expressions were assessed by flow cytometry in PBMC from 18 house dust mite (HDM) allergic rhinitics (R), 18 HDM allergic rhinitics and asthmatics (AR), 13 non allergic asthmatics (A) and 20 controls, with or without anti-co-receptors antibodies.</p> <p>Results</p> <p>In asthmatics (A+AR), a constitutive decrease of CTLA-4+ and of CD4+CD25+Foxp3+ cells was found, with an increase of IFN-γ+ cells. In allergic subjects (R + AR), allergen stimulation induced CD28 together with IL-4 and IL-13, and decreased the proportion of CTLA-4+, IL-10+ and CD4+CD25+Foxp3+ cells. Anti-ICOS and anti-CD28 antibodies blocked allergen-induced IL-4 and IL-13. IL-13 production also involved CTLA-4.</p> <p>Conclusions</p> <p>T cell activation differs between allergic rhinitis and asthma. In asthma, a constitutive, co-receptor independent, Th1 activation and Treg deficiency is found. In allergic rhinitis, an allergen-induced Treg cell deficiency is seen, as well as an ICOS-, CD28- and CTLA-4-dependent Th2 activation. Allergic asthmatics display both characteristics.</p

    Inducible Costimulator Expression Regulates the Magnitude of Th2-Mediated Airway Inflammation by Regulating the Number of Th2 Cells

    Get PDF
    Inducible Costimulator (ICOS) is an important regulator of Th2 lymphocyte function and a potential immunotherapeutic target for allergy and asthma. A SNP in the ICOS 5' promoter in humans is associated with increased atopy and serum IgE in a founder population and increased ICOS surface expression and Th2 cytokine production from peripheral blood mononuclear cells. However, it is unknown if increased ICOS expression contributes to disease progression or is a result of disease pathology.We developed a mouse model in which ICOS surface expression levels are genetically predetermined to test our hypothesis that genetic regulation of ICOS expression controls the severity of Th2 responses in vivo. Using ICOS+/+ and ICOS+/- mice in a Th2 model of airway inflammation, we found that T cells from the ICOS+/- mice had reduced ICOS expression and decreased Th2-mediated inflammation in vivo. Although the activation status of the T cells did not differ, T cells isolated from the lungs and draining lymph nodes of ICOS+/- mice at the peak of inflammation produced less Th2 cytokines upon stimulation ex vivo. Using 4get mice, which express GFP upon IL-4 transcription, we determined that the decreased Th2 cytokines in ICOS+/- is due to reduced percentage of Th2 cells and not a defect in their ability to produce IL-4.These data suggest that in both mice and humans, the level of ICOS surface expression regulates the magnitude of the in vivo Th2 response, perhaps by influencing Th2 differentiation

    Effects of Human Respiratory Syncytial Virus, Metapneumovirus, Parainfluenza Virus 3 and Influenza Virus on CD4+ T Cell Activation by Dendritic Cells

    Get PDF
    BACKGROUND: Human respiratory syncytial virus (HRSV), and to a lesser extent human metapneumovirus (HMPV) and human parainfluenza virus type 3 (HPIV3), re-infect symptomatically throughout life without antigenic change, suggestive of incomplete immunity. One causative factor is thought to be viral interference with dendritic cell (DC)-mediated stimulation of CD4+ T cells. METHODOLOGY, PRINCIPAL FINDINGS: We infected human monocyte-derived DC with purified HRSV, HMPV, HPIV3, or influenza A virus (IAV) and compared their ability to induce activation and proliferation of autologous CD4+ T cells in vitro. IAV was included because symptomatic re-infection without antigenic change is less frequent, suggesting that immune protection is more complete and durable. We examined virus-specific memory responses and superantigen-induced responses by multiparameter flow cytometry. Live virus was more stimulatory than inactivated virus in inducing DC-mediated proliferation of virus-specific memory CD4+ T cells, suggesting a lack of strong suppression by live virus. There were trends of increasing proliferation in the order: HMPV<HRSV<HPIV3<IAV, and greater production of interferon-γ and tumor necrosis factor-α by proliferating cells in response to IAV, but differences were not significant. Exposure of DC to HRSV, HPIV3, or IAV reduced CD4+ T cell proliferation in response to secondary stimulus with superantigen, but the effect was transitory and greatest for IAV. T cell cytokine production was similar, with no evidence of Th2 or Th17 skewing. CONCLUSIONS, SIGNIFICANCE: Understanding the basis for the ability of HRSV in particular to symptomatically re-infect without significant antigenic change is of considerable interest. The present results show that these common respiratory viruses are similar in their ability to induce DC to activate CD4+ T cells. Thus, the results do not support the common model in which viral suppression of CD4+ T cell activation and proliferation by HRSV, HMPV, and HPIV3 is a major factor in the difference in re-infectability compared to IAV

    Soluble ST2 Levels Are Associated with Bleeding in Patients with Severe Leptospirosis

    Get PDF
    Leptospirosis is a bacterial disease that is mainly spread by rodents and other small mammals. Transmission frequently occurs in (sub-) tropical countries, where environmental circumstances are most favourable. Severe leptospirosis can cause bleeding and vital organ dysfunction. An exaggerated immune response is thought to play an important role in the pathophysiology of leptospirosis. Soluble ST2 (sST2) is thought to inhibit negative regulatory pathways of this response. Soluble ST2 is produced by cells that surround, for example, blood vessels, and several of these blood cells play an important part in the host immune response. In an observational study, we measured the extent of sST2 release in patients suffering from severe leptospirosis. We found that patients that died from leptospirosis displayed higher levels of sST2. Moreover, from this study we have seen that sST2 levels were associated with bleeding, whereas other markers of infection were not. In an experiment, we showed that (white) blood cells did not seem to be the source of sST2 production. Damage to blood vessels is likely to cause bleeding in leptospirosis patients, exposing sST2 producing cells like fibroblasts to the blood stream. Hence, we believe that sST2 may be used as a marker for tissue damage in patients suffering from severe leptospirosis

    The Acute Environment, Rather than T Cell Subset Pre-Commitment, Regulates Expression of the Human T Cell Cytokine Amphiregulin

    Get PDF
    Cytokine expression patterns of T cells can be regulated by pre-commitment to stable effector phenotypes, further modification of moderately stable phenotypes, and quantitative changes in cytokine production in response to acute signals. We showed previously that the epidermal growth factor family member Amphiregulin is expressed by T cell receptor-activated mouse CD4 T cells, particularly Th2 cells, and helps eliminate helminth infection. Here we report a detailed analysis of the regulation of Amphiregulin expression by human T cell subsets. Signaling through the T cell receptor induced Amphiregulin expression by most or all T cell subsets in human peripheral blood, including naive and memory CD4 and CD8 T cells, Th1 and Th2 in vitro T cell lines, and subsets of memory CD4 T cells expressing several different chemokine receptors and cytokines. In these different T cell types, Amphiregulin synthesis was inhibited by an antagonist of protein kinase A, a downstream component of the cAMP signaling pathway, and enhanced by ligands that increased cAMP or directly activated protein kinase A. Prostaglandin E2 and adenosine, natural ligands that stimulate adenylyl cyclase activity, also enhanced Amphiregulin synthesis while reducing synthesis of most other cytokines. Thus, in contrast to mouse T cells, Amphiregulin synthesis by human T cells is regulated more by acute signals than pre-commitment of T cells to a particular cytokine pattern. This may be appropriate for a cytokine more involved in repair than attack functions during most inflammatory responses

    Paracrine IL-33 Stimulation Enhances Lipopolysaccharide-Mediated Macrophage Activation

    Get PDF
    BACKGROUND: IL-33, a member of the IL-1 family of cytokines, provokes Th2-type inflammation accompanied by accumulation of eosinophils through IL-33R, which consists of ST2 and IL-1RAcP. We previously demonstrated that macrophages produce IL-33 in response to LPS. Some immune responses were shown to differ between ST2-deficient mice and soluble ST2-Fc fusion protein-treated mice. Even in anti-ST2 antibody (Ab)-treated mice, the phenotypes differed between distinct Ab clones, because the characterization of such Abs (i.e., depletion, agonistic or blocking Abs) was unclear in some cases. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the precise role of IL-33, we newly generated neutralizing monoclonal Abs for IL-33. Exogenous IL-33 potentiated LPS-mediated cytokine production by macrophages. That LPS-mediated cytokine production by macrophages was suppressed by inhibition of endogenous IL-33 by the anti-IL-33 neutralizing mAbs. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that LPS-mediated macrophage activation is accelerated by macrophage-derived paracrine IL-33 stimulation

    IFNγ and IL-12 restrict Th2 responses during Helminth/Plasmodium co-infection and promote IFNγ from Th2 cells

    Get PDF
    Parasitic helminths establish chronic infections in mammalian hosts. Helminth/Plasmodium co-infections occur frequently in endemic areas. However, it is unclear whether Plasmodium infections compromise anti-helminth immunity, contributing to the chronicity of infection. Immunity to Plasmodium or helminths requires divergent CD4+ T cell-driven responses, dominated by IFNγ or IL-4, respectively. Recent literature has indicated that Th cells, including Th2 cells, have phenotypic plasticity with the ability to produce non-lineage associated cytokines. Whether such plasticity occurs during co-infection is unclear. In this study, we observed reduced anti-helminth Th2 cell responses and compromised anti-helminth immunity during Heligmosomoides polygyrus and Plasmodium chabaudi co-infection. Using newly established triple cytokine reporter mice (Il4gfpIfngyfpIl17aFP635), we demonstrated that Il4gfp+ Th2 cells purified from in vitro cultures or isolated ex vivo from helminth-infected mice up-regulated IFNγ following adoptive transfer into Rag1-/- mice infected with P. chabaudi. Functionally, Th2 cells that up-regulated IFNγ were transcriptionally re-wired and protected recipient mice from high parasitemia. Mechanistically, TCR stimulation and responsiveness to IL-12 and IFNγ, but not type I IFN, was required for optimal IFNγ production by Th2 cells. Finally, blockade of IL-12 and IFNγ during co-infection partially preserved anti-helminth Th2 responses. In summary, this study demonstrates that Th2 cells retain substantial plasticity with the ability to produce IFNγ during Plasmodium infection. Consequently, co-infection with Plasmodium spp. may contribute to the chronicity of helminth infection by reducing anti-helminth Th2 cells and converting them into IFNγ-secreting cells
    corecore