707 research outputs found

    Hybridization and Decay of Magnetic Excitations in two-dimensional Triangular Lattice Antiferromagnets

    Get PDF
    Elementary quasiparticles in solids such as phonons and magnons occasionally have nontrivial interactions between them, as well as among themselves. As a result, their energy eigenvalues are renormalized, the quasiparticles spontaneously decay into a multi-particle continuum state, or they are hybridized with each other when their energies are close. As discussed in this review, such anomalous features can appear dominantly in quantum magnets but are not, a priori, negligible for magnetic systems with larger spin values and noncollinear magnetic structures. We review the unconventional magnetic excitations in two-dimensional triangular lattice antiferromagnets and discuss their implications on related issues.Comment: 18 pages, 9 figure

    Quantum States of Neutrons in Magnetic Thin Films

    Full text link
    We have studied experimentally and theoretically the interaction of polarized neutrons with magnetic thin films and magnetic multilayers. In particular, we have analyzed the behavior of the critical edges for total external reflection in both cases. For a single film we have observed experimentally and theoretically a simple behavior: the critical edges remain fixed and the intensity varies according to the angle between the polarization axis and the magnetization vector inside the film. For the multilayer case we find that the critical edges for spin up and spin down polarized neutrons move towards each other as a function of the angle between the magnetization vectors in adjacent ferromagnetic films. Although the results for multilayers and single thick layers appear to be different, in fact the same spinor method explains both results. An interpretation of the critical edges behavior for the multilyers as a superposition of ferromagnetic and antifferomagnetic states is given.Comment: 6 pages, 5 figure

    Magnetocaloric properties of (RE)3_3Ga5_5O12_{12} (RE=Tb,Gd,Nd,Dy)

    Full text link
    We report the characteristic magnetic properties of several members of the rare earth garnet family, Gd3_3Ga5_5O12_{12} (GGG), Dy3_3Ga5_5O12_{12} (DGG), Tb3_3Ga5_5O12_{12} (TGG), and Nd3_3Ga5_5O12_{12} (NGG), and compare their relative potential utility for magnetocaloric cooling, including their minimal adiabatic demagnetisation refrigeration (ADR) temperatures and relative cooling parameters. A main objective of this work was to find potential improvements over the magnetocaloric properties of GGG for use in low temperature ADR cryostats. Using Tb+3^{+3} and Dy+3^{+3} in the RE-site offers in principle higher saturation magnetisation and Nd+3^{+3} gives a lower de Gennes factor and therefore potentially low transition temperature. Our results show that Dy3_3Ga5_5O12_{12} yields an optimal relative cooling parameter (RCPRCP) at low applied fields and a low transition temperature, which would allow for the design of more efficient ADR cryostats.Comment: 10 pages, 10 figures, submitted to Physical Review Applie

    Optimized signal deduction procedure for the MIEZE neutron spectroscopy technique

    Full text link
    We report a method to determine the phase and amplitude of sinusoidally modulated event rates, binned into 4 bins per oscillation. The presented algorithm relies on a reconstruction of the unknown parameters. It omits a calculation intensive fitting procedure and avoids contrast reduction due to averaging effects. It allows the current data acquisition bottleneck to be relaxed by a factor of 4. Here, we explain the approach in detail and compare it to the established fitting procedures of time series having 4 and 16 time bins per oscillation. In addition we present the empirical estimates of the errors of the three methods and compare them to each other. We show that the reconstruction is unbiased, asymptotic, and efficient for estimating the phase. Reconstructing the contrast, which corresponds to the amplitude of the modulation, is roughly 10% less efficient than fitting 16 time binned oscillations. Finally, we give analytical equations to estimate the error for phase and contrast as a function of their initial values and counting statistics.Comment: 14 pages, 5 figures, submitted to IOP Measurement Science and Technolog

    Magnetic excitations of the Cu2+^{2+} quantum spin chain in Sr3_3CuPtO6_6

    Get PDF
    We report the magnetic excitation spectrum as measured by inelastic neutron scattering for a polycrystalline sample of Sr3_3CuPtO6_6. Modeling the data by the 2+4 spinon contributions to the dynamical susceptibility within the chains, and with interchain coupling treated in the random phase approximation, accounts for the major features of the powder-averaged structure factor. The magnetic excitations broaden considerably as temperature is raised, persisting up to above 100 K and displaying a broad transition as previously seen in the susceptibility data. No spin gap is observed in the dispersive spin excitations at low momentum transfer, which is consistent with the gapless spinon continuum expected from the coordinate Bethe ansatz. However, the temperature dependence of the excitation spectrum gives evidence of some very weak interchain coupling.Comment: 9 pages, 5 figure

    Correlation between bulk thermodynamic measurements and the low temperature resistance plateau in SmB6

    Full text link
    Topological insulators are materials characterized by dissipationless, spin-polarized surface states resulting from non-trivial band topologies. Recent theoretical models and experiments suggest that SmB6 is the first topological Kondo insulator, in which the topologically non-trivial band structure results from electron-electron interactions via Kondo hybridization. Here, we report that the surface conductivity of SmB6 increases systematically with bulk carbon content. Further, addition of carbon is linked to an increase in n-type carriers, larger low temperature electronic contributions to the specific heat with a characteristic temperature scale of T* = 17 K, and a broadening of the crossover to the insulating state. Additionally, X-ray absorption spectroscopy shows a change in Sm valence at the surface. Our results highlight the importance of phonon dynamics in producing a Kondo insulating state and demonstrate a correlation between the bulk thermodynamic state and low temperature resistance of SmB6

    Renormalization of spin excitations in hexagonal HoMnO3 by magnon-phonon coupling

    Get PDF
    Hexagonal HoMnO3, a two-dimensional Heisenberg antiferromagnet, has been studied via inelastic neutron scattering. A simple Heisenberg model with a single-ion anisotropy describes most features of the spin-wave dispersion curves. However, there is shown to be a renormalization of the magnon energies located at around 11 meV. Since both the magnon-magnon interaction and magnon-phonon coupling can affect the renormalization in a noncollinear magnet, we have accounted for both of these couplings by using a Heisenberg XXZ model with 1=S expansions [1] and the Einstein site phonon model [13], respectively. This quantitative analysis leads to the conclusion that the renormalization effect primarily originates from the magnon-phonon coupling, while the spontaneous magnon decay due to the magnon-magnon interaction is suppressed by strong two-ion anisotropy.Comment: 5 pages, 4 figure
    • …
    corecore