254 research outputs found

    Quantum Phase Transitions

    Full text link
    We give a general introduction to quantum phase transitions in strongly-correlated electron systems. These transitions which occur at zero temperature when a non-thermal parameter gg like pressure, chemical composition or magnetic field is tuned to a critical value are characterized by a dynamic exponent zz related to the energy and length scales Δ\Delta and ξ\xi. Simple arguments based on an expansion to first order in the effective interaction allow to define an upper-critical dimension DC=4D_{C}=4 (where D=d+zD=d+z and dd is the spatial dimension) below which mean-field description is no longer valid. We emphasize the role of pertubative renormalization group (RG) approaches and self-consistent renormalized spin fluctuation (SCR-SF) theories to understand the quantum-classical crossover in the vicinity of the quantum critical point with generalization to the Kondo effect in heavy-fermion systems. Finally we quote some recent inelastic neutron scattering experiments performed on heavy-fermions which lead to unusual scaling law in ω/T\omega /T for the dynamical spin susceptibility revealing critical local modes beyond the itinerant magnetism scheme and mention new attempts to describe this local quantum critical point.Comment: 13 pages, 4 figure

    Supersymmetric Approach to Heavy-Fermion Systems

    Full text link
    We present a new supersymmetric approach to the Kondo lattice model in order to describe simultaneously the quasiparticle excitations and the low-energy magnetic fluctuations in heavy-Fermion systems. This approach mixes the fermionic and the bosonic representation of the spin following the standard rules of superalgebra. Our results show the formation of a bosonic band within the hybridization gap reflecting the spin collective modes. The density of states at the Fermi level is strongly renormalized while the Fermi surface sum rule includes nc+1n_{c}+1 states. The dynamical susceptibility is made of a Fermi liquid superimposed on a localized magnetism contribution.Comment: 5 pages, 2 figure

    Critical phenomena near the antiferromagnetic quantum critical point of Heavy-Fermions

    Full text link
    We present a study of the critical phenomena around the quantum critical point in heavy-fermion systems. In the framework of the S=1/2 Kondo lattice model, we introduce an extended decoupling scheme of the Kondo interaction which allows one to treat the spin fluctuations and the Kondo effect on an equal footing. The calculations, developed in a self-consistent one-loop approximation, lead to the formation of a damped collective mode with a dynamic exponent z=2 in the case of an antiferromagnetic instability. The system displays a quantum-classical crossover at finite temperature depending how the energy of the mode, on the scale of the magnetic correlation length, compares to k_B T. The low temperature behavior, in the different regimes separated by the crossover temperatures, is then discussed for both 2- and 3-dimensional systems.Comment: 24 pages, 5 figures, added reference

    Towards Sustainability Assessment of the Built Environment: A Classification of the Existing Challenges

    Get PDF
    The application of sustainability assessment in a decision context is associated with various challenges that explain why the transition to action-oriented knowledge still needs to be fulfilled. Therefore, this paper aims to explore the associated challenges in sustainability assessment in the decision context of the built environment. Several publications are reviewed to provide a systemic understanding of the associated complexities. The challenges in sustainability assessment in the built environment are categorized at different levels, from understanding to measurement and implementation. The challenges are further categorized into definition, context, interpretation, data, measurement methods, uncertainties, indicators and indices, results, coordination, conflicts, and action-oriented knowledge. Moreover, according to the nature of each challenge, they are classified into epistemological, methodological, and procedural challenges. The novelty of this review is that it reviews and reports almost all fragmentedly reported challenges in sustainability assessment of the built environment in the literature within a holistic framework that provides a clear understanding of the state of the art and second discusses them within an integrated framework (the Sustainability Assessment Network) including the position of active-role players to resolve them, including strategists, scientist, and stakeholders

    Theoretical analysis of the transmission phase shift of a quantum dot in the presence of Kondo correlations

    Full text link
    We study the effects of Kondo correlations on the transmission phase shift of a quantum dot coupled to two leads in comparison with the experimental determinations made by Aharonov-Bohm (AB) quantum interferometry. We propose here a theoretical interpretation of these results based on scattering theory combined with Bethe ansatz calculations. We show that there is a factor of 2 difference between the phase of the S-matrix responsible for the shift in the AB oscillations, and the one controlling the conductance. Quantitative agreement is obtained with experimental results for two different values of the coupling to the leads.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    On the correct continuum limit of the functional-integral representation for the four-slave-boson approach to the Hubbard model: Paramagnetic phase

    Full text link
    The Hubbard model with finite on-site repulsion U is studied via the functional-integral formulation of the four-slave-boson approach by Kotliar and Ruckenstein. It is shown that a correct treatment of the continuum imaginary time limit (which is required by the very definition of the functional integral) modifies the free energy when fluctuation (1/N) corrections beyond mean-field are considered. Our analysis requires us to suitably interpret the Kotliar and Ruckenstein choice for the bosonic hopping operator and to abandon the commonly used normal-ordering prescription, in order to obtain meaningful fluctuation corrections. In this way we recover the exact solution at U=0 not only at the mean-field level but also at the next order in 1/N. In addition, we consider alternative choices for the bosonic hopping operator and test them numerically for a simple two-site model for which the exact solution is readily available for any U. We also discuss how the 1/N expansion can be formally generalized to the four-slave-boson approach, and provide a simplified prescription to obtain the additional terms in the free energy which result at the order 1/N from the correct continuum limit.Comment: Changes: Printing problems (due to non-standard macros) have been removed, 44 page

    Intermediate coupling fixed point study in the overscreened regime of generalized multichannel SU(N) Kondo models

    Full text link
    We study a generalized multichannel single-impurity Kondo model, in which the impurity spin is described by a representation of the SU(N) group which combines bosonic and fermionic degrees of freedom. The impurity spin states are described by Abrikosov pseudofermions, and we make use of a method initiated by Popov and Fedotov which allows a proper handling of the fermionic constraint. The partition function is derived within a path integral approach. We use renormalization group techniques to calculate the β\beta scaling function perturbatively in powers of the Kondo coupling constant, which is justified in the weak coupling limit. The truncated expansion is valid in the overscreened (Nozieres-Blandin) regime, for an arbitrary SU(N) group and any value of the parameters characterizing the impurity spin representation. The intermediate coupling fixed point is identified. We derive the temperature dependence of various physical quantities at low T, controlled by a unique critical exponent, and show that the physics of the system in the overscreened regime governed by the intermediate coupling fixed point is characterized by a non-Fermi liquid behavior. Our results are in accordance with those obtained by other methods, as Bethe ansatz and boundary conformal field theory, in the case of various impurity spin symmetries. We establish in a unified way that the Kondo models in which the impurity spin is described successively by a fundamental, symmetric, antisymmetric and mixed symmetry representation yield all the same low-energy physics in the overscreened regime. Possible generalizations of the analysis we present to the case of arbitrary impurity spin representations of SU(N) are also discussed.Comment: 21 pages, 7 figures, REVTeX; final version accepted for publicatio

    Platinum-free photoelectrochromic devices working with copper-based electrolytes for ultrastable smart windows

    Get PDF
    Photoelectrochromic systems are devices designed for large-scale manufacturing of smart windows, capable of changing their transmittance according to external environmental conditions. This communication proposes the replacement of the two most critical photoelectrochemical device components studied so far, namely the counter electrode and the redox mediator. Regarding the first, graphene nanoplatelets are used to replace platinum, maintaining both its optical and electrocatalytic properties, and at the same time reducing the device cost. Secondly, a copper-based redox pair was chosen to solve the corrosion problems typically encountered with the iodine-based mediator. The combination of the above components led to devices with high performance (coloration speeds in the order of seconds, with a maximum contrast ratio of 10.4 : 1), as well as the achievement of a long-term stability record (over 400 days) for these photoelectrochromic systems
    • …
    corecore