8,717 research outputs found
Finite Element Analysis of Strain Effects on Electronic and Transport Properties in Quantum Dots and Wires
Lattice mismatch in layered semiconductor structures with submicron length
scales leads to extremely high nonuniform strains. This paper presents a finite
element technique for incorporating the effects of the nonuniform strain into
an analysis of the electronic properties of SiGe quantum structures. Strain
fields are calculated using a standard structural mechanics finite element
package and the effects are included as a nonuniform potential directly in the
time independent Schrodinger equation; a k-p Hamiltonian is used to model the
effects of multiple valence subband coupling. A variational statement of the
equation is formulated and solved using the finite element method. This
technique is applied to resonant tunneling diode quantum dots and wires; the
resulting densities of states confined to the quantum well layers of the
devices are compared to experimental current-voltage I(V) curves.Comment: 17 pages (LaTex), 18 figures (JPEG), submitted to Journal of Applied
Physic
Strain induced stabilization of stepped Si and Ge surfaces near (001)
We report on calculations of the formation energies of several [100] and
[110] oriented step structures on biaxially stressed Si and Ge (001) surfaces.
It is shown that a novel rebonded [100] oriented single-height step is strongly
stabilized by compressive strain compared to most well-known step structures.
We propose that the side walls of ``hut''-shaped quantum dots observed in
recent experiments on SiGe/Si films are made up of these steps. Our
calculations provide an explanation for the nucleationless growth of shallow
mounds, with steps along the [100] and [110] directions in low- and high-misfit
films, respectively, and for the stability of the (105) facets under
compressive strain.Comment: to appear in Appl. Phys. Lett.; v2=minor corrections,figs resize
Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems
The operations drip and mate considered in (mem)brane computing resemble the
operations cut and recombination well known from DNA computing. We here
consider sets of vesicles with multisets of objects on their outside membrane
interacting by drip and mate in two different setups: in test tube systems, the
vesicles may pass from one tube to another one provided they fulfill specific
constraints; in tissue-like P systems, the vesicles are immediately passed to
specified cells after having undergone a drip or mate operation. In both
variants, computational completeness can be obtained, yet with different
constraints for the drip and mate operations
Variational cluster approach to the Hubbard model: Phase-separation tendency and finite-size effects
Using the variational cluster approach (VCA), we study the transition from
the antiferromagnetic to the superconducting phase of the two-dimensional
Hubbard model at zero temperature. Our calculations are based on a new method
to evaluate the VCA grand potential which employs a modified Lanczos algorithm
and avoids integrations over the real or imaginary frequency axis. Thereby,
very accurate results are possible for cluster sizes not accessible to full
diagonalization. This is important for an improved treatment of short-range
correlations, including correlations between Cooper pairs in particular. We
investigate the cluster-size dependence of the phase-separation tendency that
has been proposed recently on the basis of calculations for smaller clusters.
It is shown that the energy barrier driving the phase separation decreases with
increasing cluster size. This supports the conjecture that the ground state
exhibits microscopic inhomogeneities rather than macroscopic phase separation.
The evolution of the single-particle spectum as a function of doping is studied
in addtion and the relevance of our results for experimental findings is
pointed out.Comment: 7 pages, 6 figures, published versio
Tests of a Novel Design of Resistive Plate Chambers
A novel design of Resistive Plate Chambers (RPCs), using only a single
resistive plate, is being proposed. Based on this design, two large size
prototype chambers were constructed and were tested with cosmic rays and in
particle beams. The tests confirmed the viability of this new approach. In
addition to showing an improved single-particle response compared to the
traditional 2-plate design, the novel chambers also prove to be suitable for
calorimetric applications
A next-to-leading order analysis of deeply virtual Compton scattering
We present a complete, next-to-leading-order (NLO), leading-twist QCD
analysis of deeply virtual Compton scattering (DVCS) observables, in the scheme, and in the kinematic ranges of the H1, ZEUS and HERMES
experiments. We use a modified form of Radyushkin's ansatz for the input model
for the generalized parton distributions. We present results for leading order
(LO) and NLO for representative observables and find that they compare
favourably to the available data.Comment: 5 pages, 2 figures, revtex, published version, we modify Radyushkin's
ansatz for the GPDs to correct for finite hadronic mass effects, and, using
the latest MRST PDFs, now agree with the H1 data (modified figs). Typo in
Eq.(3) correcte
Frictional sliding without geometrical reflection symmetry
The dynamics of frictional interfaces play an important role in many physical
systems spanning a broad range of scales. It is well-known that frictional
interfaces separating two dissimilar materials couple interfacial slip and
normal stress variations, a coupling that has major implications on their
stability, failure mechanism and rupture directionality. In contrast,
interfaces separating identical materials are traditionally assumed not to
feature such a coupling due to symmetry considerations. We show, combining
theory and experiments, that interfaces which separate bodies made of
macroscopically identical materials, but lack geometrical reflection symmetry,
generically feature such a coupling. We discuss two applications of this novel
feature. First, we show that it accounts for a distinct, and previously
unexplained, experimentally observed weakening effect in frictional cracks.
Second, we demonstrate that it can destabilize frictional sliding which is
otherwise stable. The emerging framework is expected to find applications in a
broad range of systems.Comment: 14 pages, 5 figures + Supplementary Material. Minor change in the
title, extended analysis in the second par
A detailed QCD analysis of twist-3 effects in DVCS observables
In this paper I present a detailed QCD analysis of twist-3 effects in the
Wandzura-Wilczek (WW) approximation in deeply virtual Compton scattering (DVCS)
observables for various kinematical settings, representing the HERA, HERMES,
CLAS and the planned EIC (electron-ion-collider) experiments. I find that the
twist-3 effects in the WW approximation are almost always negligible at
collider energies but can be large for low Q^2 and smaller x_bj in observables
for the lower energy, fixed target experiments directly sensitive to the real
part of DVCS amplitudes like the charge asymmetry (CA). Conclusions are then
drawn about the reliability of extracting twist-2 generalized parton
distributions (GPDs) from experimental data and a first, phenomenological,
parameterization of the LO and NLO twist-2 GPD , describing all the
currently available DVCS data within the experimental errors is given.Comment: 18 pages, 21 figures, uses Revtex4, final version to be published in
PRD, minor revisions due to referee suggestion
Modelling generalized parton distributions to describe deeply virtual Compton scattering data
We present a new model for generalized parton distributions (GPDs), based on
the aligned jet model, which successfully describes the deeply virtual Compton
scattering (DVCS) data from H1, ZEUS, HERMES and CLAS. We also present an
easily implementable and flexible algorithm for their construction. This new
model is necessary since the most widely used models for GPDs, which are based
on factorized double distributions, cannot, in their current form, describe the
DVCS data when employed in a full QCD analysis. We demonstrate explicitly the
reason for the shortcoming in the data description. We also highlight several
non-perturbative input parameters which could be used to tune the GPDs, and the
-dependence, to the DVCS data using a fitting procedure.Comment: 12 pages, 12 figures, revtex4, shortened version accepted for
publication in PRD, figures improved and references adde
Measurements of the Rate Capability of Various Resistive Plate Chambers
Resistive Plate Chambers (RPCs) exhibit a significant loss of efficiency for
the detection of particles, when subjected to high particle fluxes. This rate
limitation is related to the usually high resistivity of the resistive plates
used in their construction. This paper reports on measurements of the
performance of three different glass RPC designs featuring a different total
resistance of the resistive plates. The measurements were performed with 120
GeV protons at varying beam intensitie
- …