351 research outputs found
Effectiveness of Fluorography Versus Cineangiography at Reducing Radiation Exposure During Diagnostic Coronary Angiography
Coronary angiography is the gold standard for defining obstructive coronary disease. However, radiation exposure remains an unwanted hazard. Patients referred for coronary angiography with abdominal circumference60 ml/min were randomized to the fluorography (n = 25) or cineangiography (n = 25) group. Patients in the fluorography group underwent coronary angiography using retrospectively stored fluorography with repeat injection under cineangiography only when needed for better resolution per operator\u27s discretion. Patients in the cineangiography group underwent coronary angiography using routine cineangiography. The primary end point was patient radiation exposure measured by radiochromic film. Secondary end points included the radiation output measurement of kerma-area product and air kerma at the interventional reference point (Ka,r) and operator radiation exposure measured by a dosimeter. Patient radiation exposure (158.2 mGy [76.5 to 210.2] vs 272.5 mGy [163.3 to 314.0], p = 0.001), kerma-area product (1,323 mu Gy.m(2) 1826 to 1,765] vs 3,451 mu Gy.m(2) [2,464 to 4,818], p \u3c 0.001), and Ka,r (175 mGy [112 to 252] vs 558 mGy [313 to 621], p \u3c 0.001) were significantly lower in the fluorography compared with cineangiography group (42%, 62%, and 69% relative reduction, respectively). Operator radiation exposure trended in the same direction, although statistically nonsignificant (fluorography 2.35 mu Gy [1.24 to 6.30] vs cineangiography 5,03 mu Gy 12.48 to 7.80], p = 0.059). In conclusion, the use of fluorography in a select group of patients during coronary angiography, with repeat injection under cineangiography only when needed, was efficacious at reducing patient radiation exposure. (C) 2014 Elsevier Inc. All rights reserved
Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles
BACKGROUND: Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. RESULTS: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CONCLUSIONS: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection
Spiral and Interlocking Grain in Eucalyptus Dunnii
Spiral grain in 181 trees from a 9-year-old plantation-grown Eucalyptus dunnii was normally distributed with mean 0.33 degrees (to the left) and standard deviation 1.7 degrees, and was affected by family and by crown asymmetry. Interlocking grain was common, exhibiting a mean amplitude of 3.4 degrees (standard deviation 1.5 degrees) and a mean wavelength of 39 mm (standard deviation 12 mm). The relatively large amplitude of interlocking grain means that most trees will have spiral grain that alternates between left and right during each year. The wavelength of interlocking grain is influenced by tree size, but amplitude of interlocking is under genetic control. Both spiral grain and the amplitude of any interlocking were heritable (h2 = 0.99 and 0.63 respectively)
Towards Alignment Independent Quantitative Assessment of Homology Detection
Identification of homologous proteins provides a basis for protein annotation. Sequence alignment tools reliably identify homologs sharing high sequence similarity. However, identification of homologs that share low sequence similarity remains a challenge. Lowering the cutoff value could enable the identification of diverged homologs, but also introduces numerous false hits. Methods are being continuously developed to minimize this problem. Estimation of the fraction of homologs in a set of protein alignments can help in the assessment and development of such methods, and provides the users with intuitive quantitative assessment of protein alignment results. Herein, we present a computational approach that estimates the amount of homologs in a set of protein pairs. The method requires a prevalent and detectable protein feature that is conserved between homologs. By analyzing the feature prevalence in a set of pairwise protein alignments, the method can estimate the number of homolog pairs in the set independently of the alignments' quality. Using the HomoloGene database as a standard of truth, we implemented this approach in a proteome-wide analysis. The results revealed that this approach, which is independent of the alignments themselves, works well for estimating the number of homologous proteins in a wide range of homology values. In summary, the presented method can accompany homology searches and method development, provides validation to search results, and allows tuning of tools and methods
HIV-1 gp41 and TCRα Trans-Membrane Domains Share a Motif Exploited by the HIV Virus to Modulate T-Cell Proliferation
Viruses have evolved several strategies to modify cellular processes and evade the immune response in order to successfully infect, replicate, and persist in the host. By utilizing in-silico testing of a transmembrane sequence library derived from virus protein sequences, we have pin-pointed a nine amino-acid motif shared by a group of different viruses; this motif resembles the transmembrane domain of the α-subunit of the T-cell receptor (TCRα). The most striking similarity was found within the immunodeficiency virus (SIV and HIV) glycoprotein 41 TMD (gp41 TMD). Previous studies have shown that stable interactions between TCRα and CD3 are localized to this nine amino acid motif within TCRα, and a peptide derived from it (TCRα TMD, GLRILLLKV) interfered and intervened in the TCR function when added exogenously. We now report that the gp41 TMD peptide co-localizes with CD3 within the TCR complex and inhibits T cell proliferation in vitro. However, the inhibitory mechanism of gp41 TMD differs from that of the TCRα TMD and also from the other two known immunosuppressive regions within gp41
Chronic kidney disease care delivered by US family medicine and internal medicine trainees: results from an online survey
BACKGROUND: Complications of chronic kidney disease (CKD) contribute to morbidity and mortality. Consequently, treatment guidelines have been developed to facilitate early detection and treatment. However, given the high prevalence of CKD, many patients with early CKD are seen by non-nephrologists, who need to be aware of CKD complications, screening methods and treatment goals in order to initiate timely therapy and referral. METHODS: We performed a web-based survey to assess perceptions and practice patterns in CKD care among 376 family medicine and internal medicine trainees in the United States. Questions were focused on the identification of CKD risk factors, screening for CKD and associated co-morbidities, as well as management of anemia and secondary hyperparathyroidism in patients with CKD. RESULTS: Our data show that CKD risk factors are not universally recognized, screening for CKD complications is not generally taken into consideration, and that the management of anemia and secondary hyperparathyroidism poses major diagnostic and therapeutic difficulties for trainees. CONCLUSION: Educational efforts are needed to raise awareness of clinical practice guidelines and recommendations for patients with CKD among future practitioners
Crystal Structure of HIV-1 gp41 Including Both Fusion Peptide and Membrane Proximal External Regions
The HIV-1 envelope glycoprotein (Env) composed of the receptor binding domain gp120 and the fusion protein subunit gp41 catalyzes virus entry and is a major target for therapeutic intervention and for neutralizing antibodies. Env interactions with cellular receptors trigger refolding of gp41, which induces close apposition of viral and cellular membranes leading to membrane fusion. The energy released during refolding is used to overcome the kinetic barrier and drives the fusion reaction. Here, we report the crystal structure at 2 Å resolution of the complete extracellular domain of gp41 lacking the fusion peptide and the cystein-linked loop. Both the fusion peptide proximal region (FPPR) and the membrane proximal external region (MPER) form helical extensions from the gp41 six-helical bundle core structure. The lack of regular coiled-coil interactions within FPPR and MPER splay this end of the structure apart while positioning the fusion peptide towards the outside of the six-helical bundle and exposing conserved hydrophobic MPER residues. Unexpectedly, the section of the MPER, which is juxtaposed to the transmembrane region (TMR), bends in a 90°-angle sideward positioning three aromatic side chains per monomer for membrane insertion. We calculate that this structural motif might facilitate the generation of membrane curvature on the viral membrane. The presence of FPPR and MPER increases the melting temperature of gp41 significantly in comparison to the core structure of gp41. Thus, our data indicate that the ordered assembly of FPPR and MPER beyond the core contributes energy to the membrane fusion reaction. Furthermore, we provide the first structural evidence that part of MPER will be membrane inserted within trimeric gp41. We propose that this framework has important implications for membrane bending on the viral membrane, which is required for fusion and could provide a platform for epitope and lipid bilayer recognition for broadly neutralizing gp41 antibodies
Evolutionary Modeling of Rate Shifts Reveals Specificity Determinants in HIV-1 Subtypes
A hallmark of the human immunodeficiency virus 1 (HIV-1) is its rapid rate of evolution within and among its various subtypes. Two complementary hypotheses are suggested to explain the sequence variability among HIV-1 subtypes. The first suggests that the functional constraints at each site remain the same across all subtypes, and the differences among subtypes are a direct reflection of random substitutions, which have occurred during the time elapsed since their divergence. The alternative hypothesis suggests that the functional constraints themselves have evolved, and thus sequence differences among subtypes in some sites reflect shifts in function. To determine the contribution of each of these two alternatives to HIV-1 subtype evolution, we have developed a novel Bayesian method for testing and detecting site-specific rate shifts. The RAte Shift EstimatoR (RASER) method determines whether or not site-specific functional shifts characterize the evolution of a protein and, if so, points to the specific sites and lineages in which these shifts have most likely occurred. Applying RASER to a dataset composed of large samples of HIV-1 sequences from different group M subtypes, we reveal rampant evolutionary shifts throughout the HIV-1 proteome. Most of these rate shifts have occurred during the divergence of the major subtypes, establishing that subtype divergence occurred together with functional diversification. We report further evidence for the emergence of a new sub-subtype, characterized by abundant rate-shifting sites. When focusing on the rate-shifting sites detected, we find that many are associated with known function relating to viral life cycle and drug resistance. Finally, we discuss mechanisms of covariation of rate-shifting sites
Correction to: Using CPAP in COVID-19 patients outside of the intensive care setting: a comparison of survival and outcomes between dialysis and non-dialysis dependent patients
Abstract: Background: SARS-CoV-2 (COVID-19) is a novel coronavirus associated with high mortality rates. The use of Continuous Positive Airway Pressure (CPAP) has been recognised as a management option for severe COVID-19 (NHS, Specialty guides for patient management during the coronavirus pandemic Guidance for the role and use of non-invasive respiratory support in adult patients with coronavirus (confirmed or suspected), https://www.nice.org.uk/guidance/ng159). We offered ward-based CPAP to COVID-19, dialysis patients not suitable for escalation to ICU. The aim of the study was to evaluate the use of CPAP for COVID-19 dialysis patients compared to non-dialysis COVID-19 patients outside of the intensive care setting. We further aimed to investigate factors associated with improved outcomes. Methods: Data was collected from a single centre (Royal Preston Hospital, UK), from March to June 2020. Treatment outcomes were compared for dialysis and non-dialysis dependent patients who received CPAP with limitations on their escalation and resuscitation status. Kaplan-Meier survival curves and Cox regression models were used to compare outcomes. The primary study outcome was 30 day mortality. Confounders including length of admission, systemic anticoagulation and ultrafiltration volumes on dialysis were also analysed. Results: Over the study period, 40 dialysis patients tested positive for COVID-19, with 30 requiring hospital admission. 93% (n = 28) required supplementary oxygen and 12% (n = 9) required CPAP on the ward. These patients were compared to a serial selection of 14 non-dialysis patients treated with CPAP during the same period. Results showed a significant difference in 30 day survival rates between the two groups: 88.9% in the dialysis group vs. 21.4% in the non-dialysis group. Statistical modelling showed that anticoagulation was also an important factor and correlated with better outcomes. Conclusion: This is to the best of our knowledge, the largest series of COVID-19 dialysis patients treated with CPAP in a ward-based setting. In general, dialysis dependent patients have multiple co-morbidities including cardiovascular disease and diabetes mellitus making them vulnerable to COVID-19 and not always suitable for treatment in ICU. We showed a significantly lower 30 day mortality rate with the use of CPAP in the dialysis group (11.1%) compared to the non-dialysis group (78.6%). Despite a small sample size, we believe this study provides impetus for further work clarifying the role of CPAP in treating COVID-19 dialysis dependent patients
- …