36 research outputs found

    an observational study

    Get PDF
    Pulmonary tuberculosis (PTB) results in lung functional impairment and there are no surrogate markers to monitor the extent of lung involvement. We investigated the clinical significance of S100A12 and soluble receptor for advanced glycation end-products (sRAGE) for predicting the extent of lung involvement. We performed an observational study in India with 119 newly diagnosed, treatment naïve, sputum smear positive, HIV-negative PTB patients and 163 healthy controls. All patients were followed-up for six months. Sociodemographic variables and the serum levels of S100A12, sRAGE, esRAGE, HMGB-1, TNF-α, IFN-γ and CRP were measured. Lung involvement in PTB patients was assessed by chest radiography. Compared with healthy controls, PTB patients had increased serum concentrations of S100A12 while sRAGE was decreased. S100A12 was an independent predictor of disease occurrence (OR 1.873, 95%CI 1.212–2.891, p = 0.004). Under DOTS therapy, S100A12 decreased significantly after 4 months whereas CRP significantly decreased after 2 months (p < 0.0001). Importantly, although CRP was also an independent predictor of disease occurrence, only S100A12 was a significant predictor of lung alveolar infiltration (OR 2.60, 95%CI 1.35–5.00, p = 0.004). These results suggest that S100A12 has the potential to assess the extent of alveolar infiltration in PTB

    An Observational Study in Hyderabad/India

    Get PDF
    Background Existing reading schemes for chest X-ray (CXR) used to grade the extent of disease severity at diagnosis in patients with pulmonary tuberculosis (PTB) are often based on numerical scores that summate specific radiographic features. However, since PTB is known to exhibit a wide heterogeneity in pathology, certain features might be differentially associated with clinical parameters of disease severity. Objective We aimed to grade disease severity in PTB patients at diagnosis and after completion of DOTS treatment by developing a reading scheme based on five different radiographic manifestations and analyze their association with the clinical parameters of systemic involvement and infectivity. Methods 141 HIV-negative adults with newly diagnosed sputum smear-positive PTB were enrolled in a prospective observational study in Hyderabad, India. The presence and extent on CXRs of five radiographic manifestations, i.e., lung involvement, alveolar infiltration, cavitation, lymphadenopathy and pleural effusion, were classified using the new reading scheme by using a four-quadrant approach. We evaluated the inter-reader reliability of each manifestation, and its association with BMI and sputum smear positivity at diagnosis. The presence and extent of these radiographic manifestations were further compared with CXRs on completion of DOTS treatment. Results At diagnosis, an average lung area of 51.7% +/- 23.3% was affected by radiographic abnormalities. 94% of the patients had alveolar infiltrates, with 89.4% located in the upper quadrants, suggesting post primary PTB and in 34.8% of patients cavities were found. We further showed that the extent of affected lung area was a negative predictor of BMI (β value -0.035, p 0.019). No significant association of BMI with any of the other CXR features was found. The extent of alveolar infiltrates, along with the presence of cavitation, were strongly associated with sputum smear positivity. The microbiological cure rate in our cohort after 6 months of DOTS treatment was 95%. The extent of the affected lung area in these patients decreased from 56.0% +/- 21.5% to 31.0 +/- 20% and a decrease was also observed in the extent of alveolar infiltrates from 98.4% to 25.8% in at least one quadrant, presence of cavities from 34.8% to 1.6%, lymphadenopathy from 46.8% to 16.1%, and pleural effusion from 19.4% to 6.5%. Conclusions We established a new assessment scheme for grading disease severity in PTB by specifically considering five radiographic manifestations which were differently associated with the BMI and sputum smear positivity, changed to a different extent after 6 months of treatment and exhibited an excellent agreement between radiologists. Our results suggest that this reading scheme might contribute to the estimation of disease severity with respect to differences in disease pathology. Further studies are needed to determine a correlation with short and long-term pulmonary function impairment and whether there would be any benefit in lengthening or modulating therapy based on this CXR severity assessment

    Stakeholder Workshops Informing System Modeling—Analyzing the Urban Food–Water–Energy Nexus in Amman, Jordan

    Get PDF
    Large cities worldwide are increasingly suffering from a nexus of food, water, and energy supply challenges. This complex nexus can be analyzed with modern physico-economic system models. Only when practical knowledge from those affected, experts, and decision makers is incorporated alongside various other data sources, however, are the analyses suitable for policy advice. Here, we present a concept for “Sustainability Nexus Workshops” suitable for extracting and preparing relevant practical knowledge for nexus modeling and apply it to the case of Amman, Jordan. The experiences of the workshop participants show that, although water scarcity is the predominant resource problem in Jordan, there is a close connection between food, water, and energy as well as between resource supply and urbanization. To prevent the foreseeable significant degradation of water supply security, actions are needed across all nexus dimensions. The stakeholders demonstrate an awareness of this and suggest a variety of technical measures, policy solutions, and individual behavioral changes—often in combination. Improving the supply of food, water, and energy requires political and institutional reforms. In developing these, it must be borne in mind that the prevalent informal structures and illegal activities are both strategies for coping with nexus challenges and causes of them

    Hemokinin-1 Gene Expression Is Upregulated in Microglia Activated by Lipopolysaccharide through NF-ÎşB and p38 MAPK Signaling Pathways

    Get PDF
    The mammalian tachykinins, substance P (SP) and hemokinin-1 (HK-1), are widely distributed throughout the nervous system and/or peripheral organs, and function as neurotransmitters or chemical modulators by activating their cognate receptor NK1. The TAC1 gene encoding SP is highly expressed in the nervous system, while the TAC4 gene encoding HK-1 is uniformly expressed throughout the body, including a variety of peripheral immune cells. Since TAC4 mRNA is also expressed in microglia, the resident immune cells in the central nervous system, HK-1 may be involved in the inflammatory processes mediated by these cells. In the present study, we found that TAC4, rather than TAC1, was the predominant tachykinin gene expressed in primary cultured microglia. TAC4 mRNA expression was upregulated in the microglia upon their activation by lipopolysaccharide, a well-characterized Toll-like receptor 4 agonist, while TAC1 mRNA expression was downregulated. Furthermore, both nuclear factor-ÎşB and p38 mitogen-activated protein kinase intracellular signaling pathways were required for the upregulation of TAC4 mRNA expression, but not for the downregulation of TAC1 mRNA expression. These findings suggest that HK-1, rather than SP, plays dominant roles in the pathological conditions associated with microglial activation, such as neurodegenerative and neuroinflammatory disorders

    Inhibition of the NLRP3/IL-1β axis protects against sepsis-induced cardiomyopathy

    Get PDF
    BACKGROUND: Septic cardiomyopathy worsens the prognosis of critically ill patients. Clinical data suggest that interleukin-1β (IL-1β), activated by the NLRP3 inflammasome, compromises cardiac function. Whether or not deleting Nlrp3 would prevent cardiac atrophy and improve diastolic cardiac function in sepsis was unclear. Here, we investigated the role of NLRP3/IL-1β in sepsis-induced cardiomyopathy and cardiac atrophy. METHODS: Male Nlrp3 knockout (KO) and wild-type (WT) mice were exposed to polymicrobial sepsis by caecal ligation and puncture (CLP) surgery (KO, n = 27; WT, n = 33) to induce septic cardiomyopathy. Sham-treated mice served as controls (KO, n = 11; WT, n = 16). Heart weights and morphology, echocardiography and analyses of gene and protein expression were used to evaluate septic cardiomyopathy and cardiac atrophy. IL-1β effects on primary and immortalized cardiomyocytes were investigated by morphological and molecular analyses. IonOptix and real-time deformability cytometry (RT-DC) analysis were used to investigate functional and mechanical effects of IL-1β on cardiomyocytes. RESULTS: Heart morphology and echocardiography revealed preserved systolic (stroke volume: WT sham vs. WT CLP: 33.1 ± 7.2 μL vs. 24.6 ± 8.7 μL, P < 0.05; KO sham vs. KO CLP: 28.3 ± 8.1 μL vs. 29.9 ± 9.9 μL, n.s.; P < 0.05 vs. WT CLP) and diastolic (peak E wave velocity: WT sham vs. WT CLP: 750 ± 132 vs. 522 ± 200 mm/s, P < 0.001; KO sham vs. KO CLP: 709 ± 152 vs. 639 ± 165 mm/s, n.s.; P < 0.05 vs. WT CLP) cardiac function and attenuated cardiac (heart weight-tibia length ratio: WT CLP vs. WT sham: -26.6%, P < 0.05; KO CLP vs. KO sham: -3.3%, n.s.; P < 0.05 vs. WT CLP) and cardiomyocyte atrophy in KO mice during sepsis. IonOptix measurements showed that IL-1β decreased contractility (cell shortening: IL-1β: -15.4 ± 2.3%, P < 0.001 vs. vehicle, IL-1RA: -6.1 ± 3.3%, P < 0.05 vs. IL-1β) and relaxation of adult rat ventricular cardiomyocytes (time-to-50% relengthening: IL-1β: 2071 ± 225 ms, P < 0.001 vs. vehicle, IL-1RA: 564 ± 247 ms, P < 0.001 vs. IL-1β), which was attenuated by an IL-1 receptor antagonist (IL-1RA). RT-DC analysis indicated that IL-1β reduced cardiomyocyte size (P < 0.001) and deformation (P < 0.05). RNA sequencing showed that genes involved in NF-κB signalling, autophagy and lysosomal protein degradation were enriched in hearts of septic WT but not in septic KO mice. Western blotting and qPCR disclosed that IL-1β activated NF-κB and its target genes, caused atrophy and decreased myosin protein in myocytes, which was accompanied by an increased autophagy gene expression. These effects were attenuated by IL-1RA. CONCLUSIONS: IL-1β causes atrophy, impairs contractility and relaxation and decreases deformation of cardiomyocytes. Because NLRP3/IL-1β pathway inhibition attenuates cardiac atrophy and cardiomyopathy in sepsis, it could be useful to prevent septic cardiomyopathy

    Expression and function of human hemokinin-1 in human and guinea pig airways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the <it>TAC4 </it>gene. <it>TAC4 </it>and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study.</p> <p>Methods</p> <p>RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages.</p> <p>Results</p> <p>In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK<sub>1</sub>-and NK<sub>2</sub>-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK<sub>2</sub>-receptors, which blockade unmasked a NK<sub>1</sub>-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK<sub>1</sub>-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages.</p> <p>Conclusions</p> <p>We demonstrate endogenous expression of <it>TAC4 </it>in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.</p

    Representing farmer irrigated crop area adaptation in a large-scale hydrological model

    Get PDF
    Large-scale hydrological models (LHMs) are commonly used for regional and global assessment of future water shortage outcomes under climate and socioeconomic scenarios. The irrigation of croplands, which accounts for the lion's share of human water consumption, is critical in understanding these water shortage trajectories. Despite irrigation's defining role, LHM frameworks typically impose trajectories of land use that underlie irrigation demand, neglecting potential dynamic feedbacks in the form of human instigation of and subsequent adaptation to water shortages via irrigated crop area changes. We extend an LHM, MOSART-WM, with adaptive farmer agents, applying the model to the continental United States to explore water shortage outcomes that emerge from the interplay between hydrologic-driven surface water availability, reservoir management, and farmer irrigated crop area adaptation. The extended modeling framework is used to conduct a hypothetical computational experiment comparing differences between a model run with and without the incorporation of adaptive farmer agents. These comparative simulations reveal that accounting for farmer adaptation via irrigated crop area changes substantially alters modeled water shortage outcomes, with US-wide annual water shortages being reduced by as much as 42 % when comparing adaptive and non-adaptive versions of the model forced with US climatology from the period 1950–2009.</p
    corecore