18 research outputs found

    Geographic Visualization in Archaeology

    Get PDF
    Archaeologists are often considered frontrunners in employing spatial approaches within the social sciences and humanities, including geospatial technologies such as geographic information systems (GIS) that are now routinely used in archaeology. Since the late 1980s, GIS has mainly been used to support data collection and management as well as spatial analysis and modeling. While fruitful, these efforts have arguably neglected the potential contribution of advanced visualization methods to the generation of broader archaeological knowledge. This paper reviews the use of GIS in archaeology from a geographic visualization (geovisual) perspective and examines how these methods can broaden the scope of archaeological research in an era of more user-friendly cyber-infrastructures. Like most computational databases, GIS do not easily support temporal data. This limitation is particularly problematic in archaeology because processes and events are best understood in space and time. To deal with such shortcomings in existing tools, archaeologists often end up having to reduce the diversity and complexity of archaeological phenomena. Recent developments in geographic visualization begin to address some of these issues, and are pertinent in the globalized world as archaeologists amass vast new bodies of geo-referenced information and work towards integrating them with traditional archaeological data. Greater effort in developing geovisualization and geovisual analytics appropriate for archaeological data can create opportunities to visualize, navigate and assess different sources of information within the larger archaeological community, thus enhancing possibilities for collaborative research and new forms of critical inquiry

    (in press) Evaluating the impact of visualization of risk upon emergency route-planning

    No full text
    This paper reports on a controlled experiment evaluating how different cartographic representations of risk affect participants performance on a complex spatial decision task: route planning. The specific experimental scenario used is oriented towards emergency route-planning during flood response. The experiment compared six common abstract and metaphorical graphical symbolizations of risk. The results indicate a pattern of less-preferred graphical symbolizations associated with slower responses and lower-risk route choices. One mechanism that might explain these observed relationships would be that more complex and effortful maps promote closer attention paid by participants and lower levels of risk taking. Such user considerations have important implications for the design of maps and mapping interfaces for emergency planning and response. The data also highlights the importance of the right decision, wrong outcome problem inherent in decision-making under uncertainty: in individual instances, more risky decisions do not always lead to worse outcomes
    corecore