291 research outputs found

    The time-history of a satellite around an oblate planet

    Get PDF
    Time history of satellite around oblate plane

    Propagation of a laser beam in a plasma

    Get PDF
    This paper shows that for a nonabsorbing medium with a prescribed index of refraction, the effects of beam stability, line focusing, and beam distortion can be predicted from simple ray optics. When the paraxial approximation is used, diffraction effects are examined for Gaussian, Lorentzian, and square beams. Most importantly, it is shown that for a Gaussian beam, diffraction effects can be included simply by adding imaginary solutions to the paraxial ray equations. Also presented are several procedures to extend the paraxial approximation so that the solution will have a domain of validity of greater extent

    Transient resonances in the inspirals of point particles into black holes

    Get PDF
    We show that transient resonances occur in the two body problem in general relativity, in the highly relativistic, extreme mass-ratio regime for spinning black holes. These resonances occur when the ratio of polar and radial orbital frequencies, which is slowly evolving under the influence of gravitational radiation reaction, passes through a low order rational number. At such points, the adiabatic approximation to the orbital evolution breaks down, and there is a brief but order unity correction to the inspiral rate. Corrections to the gravitational wave signal's phase due to resonance effects scale as the square root of the inverse of mass of the small body, and thus become large in the extreme-mass-ratio limit, dominating over all other post-adiabatic effects. The resonances make orbits more sensitive to changes in initial data (though not quite chaotic), and are genuine non-perturbative effects that are not seen at any order in a standard post-Newtonian expansion. Our results apply to an important potential source of gravitational waves, the gradual inspiral of white dwarfs, neutron stars, or black holes into much more massive black holes. It is hoped to exploit observations of these sources to map the spacetime geometry of black holes. However, such mapping will require accurate models of binary dynamics, which is a computational challenge whose difficulty is significantly increased by resonance effects. We estimate that the resonance phase shifts will be of order a few tens of cycles for mass ratios ∼10−6\sim 10^{-6}, by numerically evolving fully relativistic orbital dynamics supplemented with an approximate, post-Newtonian self-force.Comment: 4 pages, 1 figure, minor correction

    Enzyme kinetics for a two-step enzymic reaction with comparable initial enzyme-substrate ratios

    Get PDF
    We extend the validity of the quasi-steady state assumption for a model double intermediate enzyme-substrate reaction to include the case where the ratio of initial enzyme to substrate concentration is not necessarily small. Simple analytical solutions are obtained when the reaction rates and the initial substrate concentration satisfy a certain condition. These analytical solutions compare favourably with numerical solutions of the full system of differential equations describing the reaction. Experimental methods are suggested which might permit the application of the quasi-steady state assumption to reactions where it may not have been obviously applicable before

    Gravitational radiation reaction and inspiral waveforms in the adiabatic limit

    Full text link
    We describe progress evolving an important limit of binary orbits in general relativity, that of a stellar mass compact object gradually spiraling into a much larger, massive black hole. These systems are of great interest for gravitational wave observations. We have developed tools to compute for the first time the radiated fluxes of energy and angular momentum, as well as instantaneous snapshot waveforms, for generic geodesic orbits. For special classes of orbits, we compute the orbital evolution and waveforms for the complete inspiral by imposing global conservation of energy and angular momentum. For fully generic orbits, inspirals and waveforms can be obtained by augmenting our approach with a prescription for the self force in the adiabatic limit derived by Mino. The resulting waveforms should be sufficiently accurate to be used in future gravitational-wave searches.Comment: Accepted for publication in Phys. Rev. Let

    Optimal Constraint Projection for Hyperbolic Evolution Systems

    Get PDF
    Techniques are developed for projecting the solutions of symmetric hyperbolic evolution systems onto the constraint submanifold (the constraint-satisfying subset of the dynamical field space). These optimal projections map a field configuration to the ``nearest'' configuration in the constraint submanifold, where distances between configurations are measured with the natural metric on the space of dynamical fields. The construction and use of these projections is illustrated for a new representation of the scalar field equation that exhibits both bulk and boundary generated constraint violations. Numerical simulations on a black-hole background show that bulk constraint violations cannot be controlled by constraint-preserving boundary conditions alone, but are effectively controlled by constraint projection. Simulations also show that constraint violations entering through boundaries cannot be controlled by constraint projection alone, but are controlled by constraint-preserving boundary conditions. Numerical solutions to the pathological scalar field system are shown to converge to solutions of a standard representation of the scalar field equation when constraint projection and constraint-preserving boundary conditions are used together.Comment: final version with minor changes; 16 pages, 14 figure

    Coexisting periodic attractors in injection locked diode lasers

    Full text link
    We present experimental evidence for coexisting periodic attractors in a semiconductor laser subject to external optical injection. The coexisting attractors appear after the semiconductor laser has undergone a Hopf bifurcation from the locked steady state. We consider the single mode rate equations and derive a third order differential equation for the phase of the laser field. We then analyze the bifurcation diagram of the time periodic states in terms of the frequency detuning and the injection rate and show the existence of multiple periodic attractors.Comment: LaTex, 14 pages, 6 postscript figures include

    Vector-soliton collision dynamics in nonlinear optical fibers

    Full text link
    We consider the interactions of two identical, orthogonally polarized vector solitons in a nonlinear optical fiber with two polarization directions, described by a coupled pair of nonlinear Schroedinger equations. We study a low-dimensional model system of Hamiltonian ODE derived by Ueda and Kath and also studied by Tan and Yang. We derive a further simplified model which has similar dynamics but is more amenable to analysis. Sufficiently fast solitons move by each other without much interaction, but below a critical velocity the solitons may be captured. In certain bands of initial velocities the solitons are initially captured, but separate after passing each other twice, a phenomenon known as the two-bounce or two-pass resonance. We derive an analytic formula for the critical velocity. Using matched asymptotic expansions for separatrix crossing, we determine the location of these "resonance windows." Numerical simulations of the ODE models show they compare quite well with the asymptotic theory.Comment: 32 pages, submitted to Physical Review
    • …
    corecore