229,657 research outputs found
Guards and thieves: antagonistic interactions between two ant species coexisting on the same ant-plant
Abstract. 1. The simultaneous occupation of a rare understorey ant-acacia Acacia mayana by its guarding ant Pseudomyrmex ferrugineus, and an apparent opportunist parasite of the mutualism, the generalist ant Camponotus planatus is described. The two ant species occur together in 30.7% of the 26 mature A. mayana plants [23.5% of all trees (n ¼ 34)] surveyed, but C. planatus is absent from saplings below 1 m in height (n ¼ 8). 2. While P. ferrugineus shows behaviour compatible with effective host-tree defence, C. planatus does not attack phytophagous insects and appears ineffective as an ant-guard. Camponotus planatus does, however, occupy swollen thorns (pseudogalls) on the host tree, and harvests nectar from extrafloral leaf nectaries. It is proposed that C. planatus is a parasite of the Acacia-Pseudomyrmex mutualism. 3. Camponotus planatus does not harvest the second trophic reward produced by the tree for its Pseudomyrmex ant-guards, protein-rich food (Beltian) bodies. Camponotus planatus lack the specialised larval adaptations needed to use Beltian bodies as brood food, suggesting that this resource is potentially more resistant to exploitation by generalists than extrafloral nectar. 4. In competition for access to nectaries, C. planatus effectively displaced P. ferrugineus in 99.8% of encounters. These results suggest not only that C. planatus is a parasite of this mutualism, but also that it is able to effectively counteract the aggression shown to other insects by the resident ant-guards
Josephson Coupling, Phase Correlations, and Josephson Plasma Resonance in Vortex Liquid Phase
Josephson plasma resonance has been introduced recently as a powerful tool to
probe interlayer Josephson coupling in different regions of the vortex phase
diagram in layered superconductors. In the liquid phase, the high temperature
expansion with respect to the Josephson coupling connects the Josephson plasma
frequency with the phase correlation function. This function, in turn, is
directly related to the pair distribution function of the liquid. We develop a
recipe to extract the phase and density correlation functions from the
dependencies of the plasma resonance frequency and the
axis conductivity on the {\it ab}-component of the
magnetic field at fixed {\it c} -component. Using Langevin dynamic simulations
of two-dimensional vortex arrays we calculate density and phase correlation
functions at different temperatures. Calculated phase correlations describe
very well the experimental angular dependence of the plasma resonance field. We
also demonstrate that in the case of weak damping in the liquid phase,
broadening of the JPR line is caused mainly by random Josephson coupling
arising from the density fluctuations of pancake vortices. In this case the JPR
line has a universal shape, which is determined only by parameters of the
superconductors and temperature.Comment: 22 pages, 6 figures, to appear in Phys. Rev. B, December
Theory of Insulator Metal Transition and Colossal Magnetoresistance in Doped Manganites
The persistent proximity of insulating and metallic phases, a puzzling
characterestic of manganites, is argued to arise from the self organization of
the twofold degenerate e_g orbitals of Mn into localized Jahn-Teller(JT)
polaronic levels and broad band states due to the large electron - JT phonon
coupling present in them. We describe a new two band model with strong
correlations and a dynamical mean-field theory calculation of equilibrium and
transport properties. These explain the insulator metal transition and colossal
magnetoresistance quantitatively, as well as other consequences of two state
coexistence
Thermodynamics of low dimensional spin-1/2 Heisenberg ferromagnets in an external magnetic field within Green function formalism
The thermodynamics of low dimensional spin-1/2 Heisenberg ferromagnets (HFM)
in an external magnetic field is investigated within a second-order two-time
Green function formalism in the wide temperature and field range. A crucial
point of the proposed scheme is a proper account of the analytical properties
for the approximate transverse commutator Green function obtained as a result
of the decoupling procedure. A good quantitative description of the correlation
functions, magnetization, susceptibility, and heat capacity of the HFM on a
chain, square and triangular lattices is found for both infinite and
finite-sized systems. The dependences of the thermodynamic functions of 2D HFM
on the cluster size are studied. The obtained results agree well with the
corresponding data found by Bethe ansatz, exact diagonalization, high
temperature series expansions, and quantum Monte Carlo simulations.Comment: 11 pages, 14 figure
Neutrino mass, proton decay and dark matter in TeV scale universal extra dimension models
We show how the problem of small neutrino masses and suppressed proton decay
can be simultaneously resolved in 6-D universal extra dimension models (UED)
with a low fundamental scale using extended gauge groups that contain the local
symmetry. The extra space dimensions are compactified either on a
or orbifold depending on whether the full gauge
group is or . In both cases, neutrino masses are suppressed by
an appropriate orbifold parity assignment for the standard model singlet
neutrinos and the proton decay rate is suppressed due to a residual discrete
symmetry left over from compactification. For lower values of the fundamental
scale, a dominant decay mode of the neutron is . An interesting
consequence of the model is a possible two component picture for dark matter of
the universe.Comment: 25 pages, two minor typos correcte
Complex X-ray Absorption and the Fe Kalpha Profile in NGC 3516
We present data from simultaneous Chandra, XMM-Newton and BeppoSAX
observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and Nov.
We have investigated the nature of the very flat observed X-ray spectrum.
Chandra grating data show the presence of X-ray absorption lines, revealing two
distinct components of the absorbing gas, one which is consistent with our
previous model of the UV/X-ray absorber while the other, which is outflowing at
a velocity of ~1100 km/s has a larger column density and is much more highly
ionized. The broad-band spectral characteristics of the X-ray continuum
observed with XMM during 2001 April, reveal the presence of a third layer of
absorption consisting of a very large column (~2.5 x 10E23 cm^-2) of highly
ionized gas with a covering fraction ~50%. This low covering fraction suggests
that the absorber lies within a few lt-days of the X-ray source and/or is
filamentary in structure. Interestingly, these absorbers are not in thermal
equilibrium with one another. The two new components are too highly ionized to
be radiatively accelerated, which we suggest is evidence for a hydromagnetic
origin for the outflow. Applying our model to the Nov dataset, we can account
for the spectral variability primarily by a drop in the ionization states of
the absorbers, as expected by the change in the continuum flux. When this
complex absorption is accounted for we find the underlying continuum to be
typical of Seyfert 1 galaxies. The spectral curvature attributed to the high
column absorber, in turn, reduces estimates of the flux and extent of any broad
Fe emission line from the accretion disk.Comment: 33 pages, 9 figures, accepted for publication in Ap
Collisional and thermal ionization of sodium Rydberg atoms I. Experiment for nS and nD atoms with n=8-20
Collisional and thermal ionization of sodium nS and nD Rydberg atoms with
n=8-20 has been studied. The experiments were performed using a two-step pulsed
laser excitation in an effusive atomic beam at atom density of about 2 10^{10}
cm^{-3}. Molecular and atomic ions from associative, Penning, and thermal
ionization processes were detected. It has been found that the atomic ions were
created mainly due to photoionization of Rydberg atoms by photons of blackbody
radiation at the ambient temperature of 300K. Blackbody ionization rates and
effective lifetimes of Rydberg states of interest were determined. The
molecular ions were found to be from associative ionization in Na(nL)+Na(3S)
collisions. Rate constants of associative ionization have been measured using
an original method based on relative measurements of Na_{2}^{+} and Na^{+} ion
signals.Comment: 23 pages, 10 figure
Kinetic and Transport Equations for Localized Excitations in Sine-Gordon Model
We analyze the kinetic behavior of localized excitations - solitons,
breathers and phonons - in Sine-Gordon model. Collision integrals for all type
of localized excitation collision processes are constructed, and the kinetic
equations are derived. We analyze the kinetic behavior of localized excitations
- solitons, breathers and phonons - in Sine-Gordon model. Collision integrals
for all type of localized excitation collision processes are constructed, and
the kinetic equations are derived. We prove that the entropy production in the
system of localized excitations takes place only in the case of inhomogeneous
distribution of these excitations in real and phase spaces. We derive transport
equations for soliton and breather densities, temperatures and mean velocities
i.e. show that collisions of localized excitations lead to creation of
diffusion, thermoconductivity and intrinsic friction processes. The diffusion
coefficients for solitons and breathers, describing the diffusion processes in
real and phase spaces, are calculated. It is shown that diffusion processes in
real space are much faster than the diffusion processes in phase space.Comment: 23 pages, latex, no figure
Quantum Dew
We consider phase separation in nonequilibrium Bose gas with an attractive
interaction between the particles. Using numerical integrations on a lattice,
we show that the system evolves into a state that contains drops of
Bose-Einstein condensate suspended in uncondensed gas. When the initial gas is
sufficiently rarefied, the rate of formation of this quantum dew scales with
the initial density as expected for a process governed by two-particle
collisions.Comment: 4 pages, revtex, 5 figure
Josephson Plasma Resonance as a Structural Probe of Vortex Liquid
Recent developments of the Josephson plasma resonance and transport c-axis
measurements in layered high T superconductors allow to probe Josephson
coupling in a wide range of the vortex phase diagram. We derive a relation
between the field dependent Josephson coupling energy and the density
correlation function of the vortex liquid. This relation provides a unique
opportunity to extract the density correlation function of pancake vortices
from the dependence of the plasma resonance on the -component of the
magnetic field at a fixed -axis component.Comment: 4 pages, 1 fugure, accepted to Phys. Rev. Let
- …