50 research outputs found

    Relationship between pneumonitis induced by immune checkpoint inhibitors and the underlying parenchymal status: a retrospective study.

    Get PDF
    In patients with primary or secondary lung tumour treated with immune checkpoint inhibitors, immune-related pneumonitis is a rare adverse event but may evolve to respiratory failure. Prompt management is required and usually consists of treatment interruption and immunosuppressive drug administration. The aim of this study was to evaluate relationships between immune-related pneumonitis and pre-existing parenchymal status, especially tumour location and history of chest radiotherapy. Computed tomography (CT) scans of patients with immune-related pneumonitis were retrospectively reviewed. Pattern, distribution and extent of pneumonitis were assessed in six lung regions. In patients who received radiotherapy, the extent of pneumonitis was evaluated according to the radiation field. Among 253 patients treated with immunotherapy, 15 cases of immune-related pneumonitis were identified. 10 had previous or concomitant chest radiotherapy in addition to immunotherapy. At CT scan, 29 (33%) out of 88 regions encompassed the primary tumour (n=4), a lung metastasis (n=4) and/or radiation fields (n=21). A significantly higher prevalence of parenchymal involvement by immune-related pneumonitis occurred within areas of primary or metastatic malignancy and/or radiation field (97%) as compared to other areas (3%, p=0.009). Lung regions affected by the primary tumour, metastasis or radiotherapy had a higher probability of immune-related pneumonitis than others (OR 10.8, p=0.024). An organising pneumonia (OP) pattern was more frequent after radiotherapy (70% versus 0%, p=0.024), whereas nonspecific interstitial pneumonia features were more commonly seen in radiotherapy-naive patients (100% versus 10%, p=0.002). In patients with primary or secondary lung tumour treated with immune checkpoint inhibitors, immune-related pneumonitis is preferentially located within lung areas involved by tumour and/or radiation fields

    Recurrences of ventricular tachycardia after stereotactic arrhythmia radioablation arise outside the treated volume: analysis of the swiss cohort

    Full text link
    BACKGROUND AND AIMS Stereotactic arrhythmia radioablation (STAR) has been recently introduced for the management of therapy-refractory ventricular tachycardia (VT). VT recurrences have been reported after STAR but the mechanisms remain largely unknown. We analyzed recurrences in our patients after STAR. METHODS From 09.2017 to 01.2020, 20 patients (68±8y, LVEF 37±15%) suffering from refractory VT were enrolled, 16/20 with a history of at least 1 electrical storm. Before STAR, an invasive electro-anatomical mapping (Carto3) of the VT substrate was performed. A mean dose of 23±2Gy was delivered to the planning target volume (PTV). RESULTS The median ablation volume was 26 ml (range 14-115) and involved the interventricular septum in 75% of patients. During the first 6 months after STAR, VT burden decreased by 92% (median value, from 108 to 10 VT/semester). After a median follow-up of 25 months, 12/20 (60%) developed a recurrence and underwent a redo ablation. VT recurrence was located in proximity of the treated substrate in 9 cases, remote from the PTV in 3 cases and involved a larger substrate over ≥3 LV segments in 2 cases. No recurrences occurred inside the PTV. Voltage measurements showed a significant decrease in both bipolar and unipolar signal amplitude after STAR. CONCLUSION STAR is a new tool available for the treatment of VT, allowing for a significant reduction of VT burden. VT recurrences are common during follow-up, but no recurrences were observed inside the PTV. Local efficacy was supported by a significant decrease in both bipolar and unipolar signal amplitude

    Refining Critical Structure Contouring in STereotactic Arrhythmia Radioablation (STAR): Benchmark Results and Consensus Guidelines from the STOPSTORM.eu Consortium.

    Get PDF
    BACKGROUND AND PURPOSE In patients with recurrent ventricular tachycardia (VT), STereotactic Arrhythmia Radioablation (STAR) shows promising results. The STOPSTORM consortium was established to investigate and harmonise STAR treatment in Europe. The primary goals of this benchmark study were to standardise contouring of organs at risk (OAR) for STAR, including detailed substructures of the heart, and accredit each participating centre. MATERIALS AND METHODS Centres within the STOPSTORM consortium were asked to delineate 31 OAR in three STAR cases. Delineation was reviewed by the consortium expert panel and after a dedicated workshop feedback and accreditation was provided to all participants. Further quantitative analysis was performed by calculating DICE similarity coefficients (DSC), median distance to agreement (MDA), and 95th percentile distance to agreement (HD95). RESULTS Twenty centres participated in this study. Based on DSC, MDA and HD95, the delineations of well-known OAR in radiotherapy were similar, such as lungs (median DSC=0.96, median MDA=0.1mm and median HD95=1.1mm) and aorta (median DSC=0.90, median MDA=0.1mm and median HD95=1.5mm). Some centres did not include the gastro-oesophageal junction, leading to differences in stomach and oesophagus delineations. For cardiac substructures, such as chambers (median DSC=0.83, median MDA=0.2mm and median HD95=0.5mm), valves (median DSC=0.16, median MDA=4.6mm and median HD95=16.0mm), coronary arteries (median DSC=0.4, median MDA=0.7mm and median HD95=8.3mm) and the sinoatrial and atrioventricular nodes (median DSC=0.29, median MDA=4.4mm and median HD95=11.4mm), deviations between centres occurred more frequently. After the dedicated workshop all centres were accredited and contouring consensus guidelines for STAR were established. CONCLUSION This STOPSTORM multi-centre critical structure contouring benchmark study showed high agreement for standard radiotherapy OAR. However, for cardiac substructures larger disagreement in contouring occurred, which may have significant impact on STAR treatment planning and dosimetry evaluation. To standardize OAR contouring, consensus guidelines for critical structure contouring in STAR were established
    corecore