281 research outputs found

    Some notes to extend the study on random non-autonomous second order linear differential equations appearing in Mathematical Modeling

    Get PDF
    The objective of this paper is to complete certain issues from our recent contribution [J. Calatayud, J.-C. Cort\'es, M. Jornet, L. Villafuerte, Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties, Advances in Difference Equations, 2018:392, 1--29 (2018)]. We restate the main theorem therein that deals with the homogeneous case, so that the hypotheses are clearer and also easier to check in applications. Another novelty is that we tackle the non-homogeneous equation with a theorem of existence of mean square analytic solution and a numerical example. We also prove the uniqueness of mean square solution via an habitual Lipschitz condition that extends the classical Picard Theorem to mean square calculus. In this manner, the study on general random non-autonomous second order linear differential equations with analytic data processes is completely resolved. Finally, we relate our exposition based on random power series with polynomial chaos expansions and the random differential transform method, being the latter a reformulation of our random Fr\"obenius method.Comment: 15 pages, 0 figures, 2 table

    Analytic solution to the generalized delay diffusion equation with uncertain inputs in the random Lebesgue sense

    Full text link
    [EN] In this paper, we deal with the randomized generalized diffusion equation with delay:u(t)(t, x) = a(2)u(xx)(t, x) + b(2)u(xx)(t - tau, x),t > tau,0 = 0;u(t,x)=phi(t,x),0 0andl > 0are constant. The coefficientsa(2)andb(2)are nonnegative random variables, and the initial condition phi(t, x)and the solutionu(t, x)are random fields. The separation of variables method develops a formal series solution. We prove that the series satisfies the delay diffusion problem in the random Lebesgue sense rigorously. By truncating the series, the expectation and the variance of the random-field solution can be approximated.Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Grant/Award Number: MTM2017-89664-P; Spanish Ministerio de Economia, Industria y Competitividad (MINECO); Agencia Estatal de Investigacion (AEI); Fondo Europeo de Desarrollo Regional (FEDER UE), Grant/Award Number: MTM2017-89664-PCortés, J.; Jornet, M. (2021). Analytic solution to the generalized delay diffusion equation with uncertain inputs in the random Lebesgue sense. Mathematical Methods in the Applied Sciences. 44(2):2265-2272. https://doi.org/10.1002/mma.6921S22652272442Smith, H. (2011). An Introduction to Delay Differential Equations with Applications to the Life Sciences. Texts in Applied Mathematics. doi:10.1007/978-1-4419-7646-8Driver, R. D. (1977). Ordinary and Delay Differential Equations. Applied Mathematical Sciences. doi:10.1007/978-1-4684-9467-9Kolmanovskii, V., & Myshkis, A. (1999). Introduction to the Theory and Applications of Functional Differential Equations. doi:10.1007/978-94-017-1965-0Wu, J. (1996). Theory and Applications of Partial Functional Differential Equations. Applied Mathematical Sciences. doi:10.1007/978-1-4612-4050-1Diekmann, O., Verduyn Lunel, S. M., van Gils, S. A., & Walther, H.-O. (1995). Delay Equations. Applied Mathematical Sciences. doi:10.1007/978-1-4612-4206-2Hale, J. K. (1977). Theory of Functional Differential Equations. Applied Mathematical Sciences. doi:10.1007/978-1-4612-9892-2Travis, C. C., & Webb, G. F. (1974). Existence and stability for partial functional differential equations. Transactions of the American Mathematical Society, 200, 395-395. doi:10.1090/s0002-9947-1974-0382808-3Bocharov, G. A., & Rihan, F. A. (2000). Numerical modelling in biosciences using delay differential equations. Journal of Computational and Applied Mathematics, 125(1-2), 183-199. doi:10.1016/s0377-0427(00)00468-4Jackson, M., & Chen-Charpentier, B. M. (2017). Modeling plant virus propagation with delays. Journal of Computational and Applied Mathematics, 309, 611-621. doi:10.1016/j.cam.2016.04.024Chen-Charpentier, B. M., & Diakite, I. (2016). A mathematical model of bone remodeling with delays. Journal of Computational and Applied Mathematics, 291, 76-84. doi:10.1016/j.cam.2014.11.025ErneuxT.Applied Delay Differential Equations Surveys and Tutorials in the Applied Mathematical Sciences Series:Springer New York;2009.Kyrychko, Y. N., & Hogan, S. J. (2010). On the Use of Delay Equations in Engineering Applications. Journal of Vibration and Control, 16(7-8), 943-960. doi:10.1177/1077546309341100Matsumoto, A., & Szidarovszky, F. (2009). Delay Differential Nonlinear Economic Models. Nonlinear Dynamics in Economics, Finance and Social Sciences, 195-214. doi:10.1007/978-3-642-04023-8_11Harding, L., & Neamţu, M. (2016). A Dynamic Model of Unemployment with Migration and Delayed Policy Intervention. Computational Economics, 51(3), 427-462. doi:10.1007/s10614-016-9610-3Xiu, D. (2010). Numerical Methods for Stochastic Computations. doi:10.2307/j.ctv7h0skvLe Maître, O. P., & Knio, O. M. (2010). Spectral Methods for Uncertainty Quantification. Scientific Computation. doi:10.1007/978-90-481-3520-2NeckelT RuppF.Random Differential Equations in Scientific Computing. Walter de Gruyter;2013.Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040Burgos, C., Calatayud, J., Cortés, J.-C., & Villafuerte, L. (2018). Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series. Applied Mathematics Letters, 78, 95-104. doi:10.1016/j.aml.2017.11.009Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Random differential equations with discrete delay. Stochastic Analysis and Applications, 37(5), 699-707. doi:10.1080/07362994.2019.1608833Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Lp\mathrm {L}^p-calculus Approach to the Random Autonomous Linear Differential Equation with Discrete Delay. Mediterranean Journal of Mathematics, 16(4). doi:10.1007/s00009-019-1370-6Martín, J. A., Rodríguez, F., & Company, R. (2004). Analytic solution of mixed problems for thegeneralized diffusion equation with delay. Mathematical and Computer Modelling, 40(3-4), 361-369. doi:10.1016/j.mcm.2003.10.046Martínez-Cervantes, G. (2016). Riemann integrability versus weak continuity. Journal of Mathematical Analysis and Applications, 438(2), 840-855. doi:10.1016/j.jmaa.2016.01.054Cortés, J. C., Sevilla-Peris, P., & Jódar, L. (2005). Analytic-numerical approximating processes of diffusion equation with data uncertainty. Computers & Mathematics with Applications, 49(7-8), 1255-1266. doi:10.1016/j.camwa.2004.05.015Khusainov, D. Y., Ivanov, A. F., & Kovarzh, I. V. (2009). Solution of one heat equation with delay. Nonlinear Oscillations, 12(2), 260-282. doi:10.1007/s11072-009-0075-3Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Uncertainty quantification for random parabolic equations with nonhomogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences, 42(17), 5649-5667. doi:10.1002/mma.5333BotevZ RidderA.Variance reductionWiley StatsRef: Statistics Reference Online;2017:1–6.https://doi.org/10.1002/9781118445112.stat0797

    Lp-solution to the random linear delay differential equation with stochastic forcing term

    Full text link
    [EN] This paper aims at extending a previous contribution dealing with the random autonomous-homogeneous linear differential equation with discrete delay tau > 0, by adding a random forcing term f(t) that varies with time: x'(t) = ax(t) + bx(t-tau) + f(t), t >= 0, with initial condition x(t) = g(t), -tau <= t <= 0. The coefficients a and b are assumed to be random variables, while the forcing term f(t) and the initial condition g(t) are stochastic processes on their respective time domains. The equation is regarded in the Lebesgue space L-p of random variables with finite p-th moment. The deterministic solution constructed with the method of steps and the method of variation of constants, which involves the delayed exponential function, is proved to be an L-p-solution, under certain assumptions on the random data. This proof requires the extension of the deterministic Leibniz's integral rule for differentiation to the random scenario. Finally, we also prove that, when the delay tau tends to 0, the random delay equation tends in L-p to a random equation with no delay. Numerical experiments illustrate how our methodology permits determining the main statistics of the solution process, thereby allowing for uncertainty quantification.This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P.Cortés, J.; Jornet, M. (2020). Lp-solution to the random linear delay differential equation with stochastic forcing term. Mathematics. 8(6):1-16. https://doi.org/10.3390/math8061013S11686Xiu, D., & Karniadakis, G. E. (2004). Supersensitivity due to uncertain boundary conditions. International Journal for Numerical Methods in Engineering, 61(12), 2114-2138. doi:10.1002/nme.1152Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2016). A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 32, 199-210. doi:10.1016/j.cnsns.2015.08.009Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Cortés, J.-C., Jódar, L., Roselló, M.-D., & Villafuerte, L. (2012). Solving initial and two-point boundary value linear random differential equations: A mean square approach. Applied Mathematics and Computation, 219(4), 2204-2211. doi:10.1016/j.amc.2012.08.066Calatayud, J., Cortés, J.-C., Jornet, M., & Villafuerte, L. (2018). Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1848-8Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040Burgos, C., Calatayud, J., Cortés, J.-C., & Villafuerte, L. (2018). Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series. Applied Mathematics Letters, 78, 95-104. doi:10.1016/j.aml.2017.11.009Nouri, K., & Ranjbar, H. (2014). Mean Square Convergence of the Numerical Solution of Random Differential Equations. Mediterranean Journal of Mathematics, 12(3), 1123-1140. doi:10.1007/s00009-014-0452-8Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Random differential equations with discrete delay. Stochastic Analysis and Applications, 37(5), 699-707. doi:10.1080/07362994.2019.1608833Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Lp\mathrm {L}^p-calculus Approach to the Random Autonomous Linear Differential Equation with Discrete Delay. Mediterranean Journal of Mathematics, 16(4). doi:10.1007/s00009-019-1370-6Caraballo, T., Cortés, J.-C., & Navarro-Quiles, A. (2019). Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay. Applied Mathematics and Computation, 356, 198-218. doi:10.1016/j.amc.2019.03.048Zhou, T. (2014). A Stochastic Collocation Method for Delay Differential Equations with Random Input. Advances in Applied Mathematics and Mechanics, 6(4), 403-418. doi:10.4208/aamm.2012.m38Shi, W., & Zhang, C. (2017). Generalized polynomial chaos for nonlinear random delay differential equations. Applied Numerical Mathematics, 115, 16-31. doi:10.1016/j.apnum.2016.12.004Khusainov, D. Y., Ivanov, A. F., & Kovarzh, I. V. (2009). Solution of one heat equation with delay. Nonlinear Oscillations, 12(2), 260-282. doi:10.1007/s11072-009-0075-3Shaikhet, L. (2016). Stability of equilibrium states of a nonlinear delay differential equation with stochastic perturbations. International Journal of Robust and Nonlinear Control, 27(6), 915-924. doi:10.1002/rnc.3605Benhadri, M., & Zeghdoudi, H. (2018). Mean square asymptotic stability in nonlinear stochastic neutral Volterra-Levin equations with Poisson jumps and variable delays. Functiones et Approximatio Commentarii Mathematici, 58(2). doi:10.7169/facm/1657Santonja, F.-J., & Shaikhet, L. (2012). Analysing Social Epidemics by Delayed Stochastic Models. Discrete Dynamics in Nature and Society, 2012, 1-13. doi:10.1155/2012/530472Liu, L., & Caraballo, T. (2018). Analysis of a Stochastic 2D-Navier–Stokes Model with Infinite Delay. Journal of Dynamics and Differential Equations, 31(4), 2249-2274. doi:10.1007/s10884-018-9703-xLupulescu, V., & Abbas, U. (2011). Fuzzy delay differential equations. Fuzzy Optimization and Decision Making, 11(1), 99-111. doi:10.1007/s10700-011-9112-7Krapivsky, P. L., Luck, J. M., & Mallick, K. (2011). On stochastic differential equations with random delay. Journal of Statistical Mechanics: Theory and Experiment, 2011(10), P10008. doi:10.1088/1742-5468/2011/10/p10008GARRIDO-ATIENZA, M. J., OGROWSKY, A., & SCHMALFUSS, B. (2011). RANDOM DIFFERENTIAL EQUATIONS WITH RANDOM DELAYS. Stochastics and Dynamics, 11(02n03), 369-388. doi:10.1142/s0219493711003358Cortés, J.-C., Villafuerte, L., & Burgos, C. (2017). A Mean Square Chain Rule and its Application in Solving the Random Chebyshev Differential Equation. Mediterranean Journal of Mathematics, 14(1). doi:10.1007/s00009-017-0853-6Cortés, J. C., Jódar, L., & Villafuerte, L. (2007). Numerical solution of random differential equations: A mean square approach. Mathematical and Computer Modelling, 45(7-8), 757-765. doi:10.1016/j.mcm.2006.07.017Braumann, C. A., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2018). On the random gamma function: Theory and computing. Journal of Computational and Applied Mathematics, 335, 142-155. doi:10.1016/j.cam.2017.11.045Khusainov, D. Y., & Pokojovy, M. (2015). Solving the Linear 1D Thermoelasticity Equations with Pure Delay. International Journal of Mathematics and Mathematical Sciences, 2015, 1-11. doi:10.1155/2015/47926

    Improving Kernel Methods for Density Estimation in Random Differential Equations Problems

    Full text link
    [EN] Kernel density estimation is a non-parametric method to estimate the probability density function of a random quantity from a finite data sample. The estimator consists of a kernel function and a smoothing parameter called the bandwidth. Despite its undeniable usefulness, the convergence rate may be slow with the number of realizations and the discontinuity and peaked points of the target density may not be correctly captured. In this work, we analyze the applicability of a parametric method based on Monte Carlo simulation for the density estimation of certain random variable transformations. This approach has important applications in the setting of differential equations with input random parameters.This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P.Cortés, J.; Jornet Sanz, M. (2020). Improving Kernel Methods for Density Estimation in Random Differential Equations Problems. Mathematical and Computational Applications (Online). 25(2):1-9. https://doi.org/10.3390/mca25020033S19252Calatayud, J., Cortés, J.-C., Díaz, J. A., & Jornet, M. (2020). Constructing reliable approximations of the probability density function to the random heat PDE via a finite difference scheme. Applied Numerical Mathematics, 151, 413-424. doi:10.1016/j.apnum.2020.01.012Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024Calatayud, J., Cortés, J.-C., Díaz, J. A., & Jornet, M. (2019). Density function of random differential equations via finite difference schemes: a theoretical analysis of a random diffusion-reaction Poisson-type problem. Stochastics, 92(4), 627-641. doi:10.1080/17442508.2019.1645849Calatayud, J., Cortés, J.-C., Dorini, F. A., & Jornet, M. (2020). Extending the study on the linear advection equation subject to stochastic velocity field and initial condition. Mathematics and Computers in Simulation, 172, 159-174. doi:10.1016/j.matcom.2019.12.014Jornet, M., Calatayud, J., Le Maître, O. P., & Cortés, J.-C. (2020). Second order linear differential equations with analytic uncertainties: Stochastic analysis via the computation of the probability density function. Journal of Computational and Applied Mathematics, 374, 112770. doi:10.1016/j.cam.2020.112770Tang, K., Wan, X., & Liao, Q. (2020). Deep density estimation via invertible block-triangular mapping. Theoretical and Applied Mechanics Letters, 10(3), 143-148. doi:10.1016/j.taml.2020.01.023Botev, Z., & Ridder, A. (2017). Variance Reduction. Wiley StatsRef: Statistics Reference Online, 1-6. doi:10.1002/9781118445112.stat0797

    Random differential equations with discrete delay

    Full text link
    [EN] In this article, we study random differential equations with discrete delay with initial condition The uncertainty in the problem is reflected via the outcome omega. The initial condition g(t) is a stochastic process. The term x(t) is a stochastic process that solves the random differential equation with delay in a probabilistic sense. In our case, we use the random calculus approach. We extend the classical Picard theorem for deterministic ordinary differential equations to calculus for random differential equations with delay, via Banach fixed-point theorem. We also relate solutions with sample-path solutions. Finally, we utilize the theoretical ideas to solve the random autonomous linear differential equation with discrete delay.This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017 89664 PCalatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Random differential equations with discrete delay. Stochastic Analysis and Applications. 37(5):699-707. https://doi.org/10.1080/07362994.2019.1608833S699707375Fridman, E., & Shaikhet, L. (2017). Stabilization by using artificial delays: An LMI approach. Automatica, 81, 429-437. doi:10.1016/j.automatica.2017.04.015Shaikhet, L., & Korobeinikov, A. (2015). Stability of a stochastic model for HIV-1 dynamics within a host. Applicable Analysis, 95(6), 1228-1238. doi:10.1080/00036811.2015.1058363Caraballo, T., Colucci, R., & Guerrini, L. (2018). On a predator prey model with nonlinear harvesting and distributed delay. Communications on Pure & Applied Analysis, 17(6), 2703-2727. doi:10.3934/cpaa.2018128Caraballo, T., J. Garrido-Atienza, M., Schmalfuss, B., & Valero, J. (2017). Attractors for a random evolution equation with infinite memory: Theoretical results. Discrete & Continuous Dynamical Systems - B, 22(5), 1779-1800. doi:10.3934/dcdsb.2017106Krapivsky, P. L., Luck, J. M., & Mallick, K. (2011). On stochastic differential equations with random delay. Journal of Statistical Mechanics: Theory and Experiment, 2011(10), P10008. doi:10.1088/1742-5468/2011/10/p10008Liu, S., Debbouche, A., & Wang, J. (2017). On the iterative learning control for stochastic impulsive differential equations with randomly varying trial lengths. Journal of Computational and Applied Mathematics, 312, 47-57. doi:10.1016/j.cam.2015.10.028Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6Nouri, K., Ranjbar, H., & Torkzadeh, L. (2019). Modified stochastic theta methods by ODEs solvers for stochastic differential equations. Communications in Nonlinear Science and Numerical Simulation, 68, 336-346. doi:10.1016/j.cnsns.2018.08.013Lupulescu, V., O’Regan, D., & ur Rahman, G. (2014). Existence results for random fractional differential equations. Opuscula Mathematica, 34(4), 813. doi:10.7494/opmath.2014.34.4.813Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Granas, A., & Dugundji, J. (2003). Fixed Point Theory. Springer Monographs in Mathematics. doi:10.1007/978-0-387-21593-

    Mathematical methods for the randomized non-autonomous Bertalanffy model

    Full text link
    [EN] In this article we analyze the randomized non-autonomous Bertalanffy model x' (t, omega) = a(t, omega)x(t, omega) b(t, omega)x(t, omega)(2/3), x(t(0), omega) = x(0)(omega), where a(t, omega) and b(t, omega) are stochastic processes and x(0)(omega) is a random variable, all of them defined in an underlying complete probability space. Under certain assumptions on a, b and x(0), we obtain a solution stochastic process, x(t, omega), both in the sample path and in the mean square senses. By using the random variable transformation technique and Karhunen-Loeve expansions, we construct a sequence of probability density functions that under certain conditions converge pointwise or uniformly to the density function of x(t, omega), f (t) (x). This permits approximating the expectation and the variance of x(t, omega). At the end, numerical experiments are carried out to put in practice our theoretical findings.This work was supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), by the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia.Calatayud, J.; Caraballo, T.; Cortés, J.; Jornet, M. (2020). Mathematical methods for the randomized non-autonomous Bertalanffy model. Electronic Journal of Differential Equations. 2020:1-19. http://hdl.handle.net/10251/161056S119202
    • …
    corecore