56,129 research outputs found

    Waltz User Manual

    Get PDF
    This Document describes relevant information to understand and control the Waltz Visualization System. Waltz is a tool to visualize three dimensional data and reads special reference files containing details of the data file, path name, dimensions and aspect ratios of the data. Waltz (as the name suggests) contains three parts: Generalization, Specialization and Abstraction. The Generalization Process splits the data into spatially connected groups. A specialization is formed from a subset (selection) of these groups. The results are displayed in multiple abstract views of the same data. These abstractions are formed by losing or augmenting the data to facilitate in the understanding of the data

    On Recent Progress for the Stochastic Navier Stokes Equations

    Get PDF
    We give an overview of the ideas central to some recent developments in the ergodic theory of the stochastically forced Navier Stokes equations and other dissipative stochastic partial differential equations. Since our desire is to make the core ideas clear, we will mostly work with a specific example: the stochastically forced Navier Stokes equations. To further clarify ideas, we will also examine in detail a toy problem. A few general theorems are given. Spatial regularity, ergodicity, exponential mixing, coupling for a SPDE, and hypoellipticity are all discussed.Comment: Corrected version of Journees Equations aux derivees partielles paper(June 2003). Original at http://www.math.sciences.univ-nantes.fr/edpa/2003

    Sticky Pixels: Evolutionary Growth by Random Drop Ballistic Aggregation

    Get PDF
    Over the years many techniques have been developed for simulating and modelling trees, ferns, crystals and natural structures. Indeed, many complex and realistic images have been formed. Often, these rely on rule based systems to create the structure, they start with a simple form and progressively refine it into a more complex form by applying rules. We use the notion of Sticky Pixels to form textures. The pixels (or objects) move around the space, when they touch another object they stick together to form a larger cluster. The objects aggregate and stop at the place and position where they first touched. Such an aggregation generates neighbourhoods of pixels that form natural looking shapes. The pixels may randomly walk around (such as using Brownian motion), or be guided along pre-defined routes (often described as ballistic), to obtain different structures. We use a ballistic aggregation technique, where the particles are randomly dropped onto a canvas, migrate and stick onto the closest position of the nearest cluster. We present Sticky Pixels, explain different parameters and describe our algorithm

    Comparing State Income Tax Preferences for the Elderly in the Southeast - Brief

    Get PDF
    This brief looks at the current state of these tax preferences in the Southeast for those states that impose a major income tax and estimates the dollar value of these preferences. FRC Brief 14

    An Overview of Rendering from Volume Data --- including Surface and Volume Rendering

    Get PDF
    Volume rendering is a title often ambiguously used in science. One meaning often quoted is: `to render any three volume dimensional data set'; however, within this categorisation `surface rendering'' is contained. Surface rendering is a technique for visualising a geometric representation of a surface from a three dimensional volume data set. A more correct definition of Volume Rendering would only incorporate the direct visualisation of volumes, without the use of intermediate surface geometry representations. Hence we state: `Volume Rendering is the Direct Visualisation of any three dimensional Volume data set; without the use of an intermediate geometric representation for isosurfaces'; `Surface Rendering is the Visualisation of a surface, from a geometric approximation of an isosurface, within a Volume data set'; where an isosurface is a surface formed from a cross connection of data points, within a volume, of equal value or density. This paper is an overview of both Surface Rendering and Volume Rendering techniques. Surface Rendering mainly consists of contouring lines over data points and triangulations between contours. Volume rendering methods consist of ray casting techniques that allow the ray to be cast from the viewing plane into the object and the transparency, opacity and colour calculated for each cell; the rays are often cast until an opaque object is `hit' or the ray exits the volume
    • …
    corecore